
Computer Assisted Performance usingMIDI-Based Electronic Musical InstrumentsJames S. PlankDepartment of Computer ScienceUniversity of TennesseeKnoxville, TN 37996plank@cs.utk.eduFebruary 16, 1999
Technical Report UT-CS-99-416University of TennesseeAvailable via ftp to cs.utk.edu in pub/plank/papers/CS-99-416.ps.ZOr on the web at http://www.cs.utk.edu/~plank/plank/papers/CS-99-416.html

1

Computer Assisted Performance using MIDI-Based ElectronicMusical InstrumentsJames S. Plank�February 16, 1999Technical Report CS-99-416, University of TennesseeAbstractMany people desire to play a musical instrument, but lack either the time or the skill to play it to theirsatisfaction. This paper details a method for a computer to assist a performer in performing speci�cpieces of music on MIDI-based instruments. The general concept is not new. However, the speci�cmethod and matching algorithms are. This paper provides motivation, overview, historical perspective,and details on the algorithms used to provide computer-assisted musical performance.1 MotivationConsider an amateur pianist. Call him Bob. Bob loves piano music, and can play a variety of easy tointermediate-level piano works. However, Bob would like to play a wider variety of pieces, including:� Pieces that are technically too challenging for his current level of skill.� Pieces that he does not have the time to learn or practice.In short, Bob does not have the time or skill to play the complete variety of music that he would like to play.The method described in this paper attempts to solve Bob's problem. With this process, Bob connectsan electronic keyboard to a computer. The computer executes a program that access a �le containing thenotes of the piece that Bob wants to play. The �le also contains additional information (de�ned later in thisdocument) that helps drive the performance. Bob then plays the piece by pressing keys on the keyboard. Thekeyboard does not play the notes that correspond to the keys Bob presses. Instead, the keyboard translatesBob's key presses and releases into events that are sent to the computer (typically using the MIDI standard).The computer uses these events to \play" the notes of the piece. These may be played by the computer'ssound card, or sent to a sound synthesizer, perhaps attached to Bob's keyboard.At a high level, the way the computer performs this translation is as follows. Each key that Bob pressesinstructs the computer to play one or more notes of the piece. These notes are held until Bob releases thekey. Moreover, if Bob's keyboard can sense how hard he presses the keys, then this information is used todirect how loudly the computer plays the notes.In other words, Bob \plays" the piece much like he plays a piece on a regular piano. However, he doesnot have to hit the correct notes of the piece. Additionally, he does not have to play all of the notes, sincethe computer can play multiple notes in accordance to one key press. Most importantly, though, Bob stillcontrols the performance in terms of dynamics, expression, tempo, etc. Thus, the computer does not performthe piece for Bob | Bob performs the piece using the computer.�Department of Computer Scienct, University of Tennessee, Knoxville, TN 37996. plank@cs.utk.edu,http://www.cs.utk.edu/~plank. This research and software is not part of the author's research program at the Universityof Tennessee. It is a project that the author has performed in his spare time. Nonetheless, the project has merit in the areaof computer science, and therefore the Department of Computer Science has graciously agreed to publish this technical report,and to allow the author to post related material on the department's FTP site and HTTP servers.2

Electronic Instrument

Computer

MIDI events generated
by playing the instrument.

These events are not played
through any speakers.

MIDI events generated by the computer,
triggered by the MIDI events generated

from the instrument. These are sent
to the instrument and played using the

instrument’s internal sound synthesizer.Figure 1: A typical performing environmentIn sum, the motivation for this invention is for a computer to assist a performer in playing a piece ofmusic. The performer contols the parts of the performance that make a performance meaningful (dynamics,expression, tempo), but is relieved of the burden of having to learn notes and techniques that are not necessarywhen a computer is employed. The method attempts to minimize the amount of work (i.e. \practicing")that is necessary for a performer to engage in a satisfying performance of a piece of music.2 The computing/performing environmentA typical performing environment is depicted in Figure 1. An electronic instrument is played by depressingand releasing keys and pedals, turning wheels, etc. In the description below, I will use the example of anelectronic keyboard, but other electronic instruments are possible. The instrument generates musical eventssuch as \note on", \note o�", \pedal down", etc. Typically, these are encoded with the MIDI standard, butother encodings are possible. The musical events are not translated directly into sounds by the instrument.Most electronic instruments have the ability to \turn local echo o�", which means that when a performerplays the instrument, no sounds are emitted through its speakers. This is like playing with the volumeturned o�. The playing of the instrument simply generates musical events that are sent through an output(MIDI) port of the instrument.The events go to a computer. The computer has stored a �le containing an annotated version of thepiece being played. This �le contains the notes of the piece and when they are expected to be played. It alsocontains information about how the events that the performer generates will cause the notes of the piece tobe played. The computer matches the input events to the notes of the piece, and emits output events whichare to be played by a sound synthesizer. In the picture, the synthesizer is part of the electronic instrument,but it could just as easily be the sound card on the computer.Thus, instead of having the instrument play notes through a sound synthesizer directly, the instrumentprovides input to a computer, which plays notes of a speci�c piece through a sound synthesizer. However,by playing the instrument, the performer has control over the way in which the computer plays these notes.Thus, the instrument, computer, and sound synthesizer combine to become a new instrument whose job isto play the piece of music stored in the input �le. 3

3 The input �leThe piece of music being played must �rst be translated into a format readable by the computer program andstored in a �le. This �le contains the notes of the piece, plus information on how the input events generatedby the performer should play these notes. The input �le may be annotated so that the performance can takeon any degree of complexity. It can be made very easy, where the entire piece may be played by repeatedlypressing one key on a keyboard, or it can be made very complex, where each event of the piece must bespeci�ed by a concommitant event by the performer. In the former case, the piece is easy to play, but givesthe performer only limited control of the expression of the piece. In the latter case, the piece is harder toplay, but gives the performer more control over the performance.4 Notation and conventionsIn the sections below, the description will assume that the setup in Figure 1 is being used, and that aperformer named Bob is playing a velocity sensitive, MIDI-based, electronic keyboard. Velocity sensitivemeans that the keyboard senses how hard a key is pressed, and converts that into a number called thevelocity. Larger velocities mean that the keys are pressed harder, and if a key press is translated into a notewith a large velocity, then a synthesizer normally plays that note louder than one with a small velocity.MIDI is a format standard for electronic music that is especially well-suited to electronic keyboards. AMIDI-based keyboard emits MIDI events whenever the user performs certain actions. For example, a keypress generates the Note-On event, and a key release generates the Note-Off event. These events havethe following format:Note-On key velocityNote-Off key velocityThe key �eld speci�es the key pressed. This is an integer value between zero and 127. By convention,middle C is 60, and each half-step on the keyboard equals one unit. Thus, D above middle C is 62, and Bbelow middle C is 59. The velocity is a value between zero and 127. In the Note-On event, it correspondsto how hard the relevant key was pressed. In the Note-Off event, it is typically ignored.There are other events as part of the MIDI standard. Control events are an important class of events.These are events other than Note-On and Note-Off that have an e�ect on the performace. For example,depressing and releasing a pedal generates two separate control events. A \program change" is another kindof control event that instructs the synthesizer to synthesize sounds from a di�erent instrument. For example,most electronic keyboards can synthesize piano sounds and organ sounds { the Program-Change eventallows the performer to tell the synthesizer which sounds to emit.Although the key �eld is su�cient to specify the pitch of a note, it is often useful to specify a note byits common musical name. This document employs notation in which notes are speci�ed as LetterOctave.Middle C is speci�ed as C0. C an octave higher is speci�ed as C1, and C an octave lower is speci�ed asC-1. B a half-step below middle C is B-1, and D a whole step above middle C is D0. Sharps and ats arespeci�ed with `]' and `['. Thus, the note a half-step above middle C is either C]0 or D[0. Note that middleC may also be designated as B]-1.5 The MethodThe method of achieving computer assisted performance is best explained by way of some examples. Afterdetailing three examples, a high-level description of the entire process will be given.5.1 Example 1: A one-line melodySuppose that Bob wants to play the �rst few bars of \Happy Birthday" (Figure 2). We call the computerprogram that drives his performance \Program A". 4

Hap-py Birth-day to you! Hap-py Birth-day to you!

3
4 Figure 2: Happy Birthday, melody only.First, the music is stored in a �le that describes the ordering of the notes, as in Figure 3. Note thatinformation concerning the duration of the notes, and where they lie within the piece (e.g. \measure 2, beat1") is not necessary. C0 C0 D0 C0 F0 E0 C0 C0 D0 C0 G0 F0Figure 3: Happy Birthday, melody only, stored in a �le.Now, to play this piece, Bob simply presses keys on the keyboard. Each key press plays a note of thepiece, which is held until the key is released. The �rst key press plays the �rst note; the second key pressplays the second note, and so on. The identity of the key that is pressed is unimportant in this simpleexample { Bob may play any note to start the piece. However, he knows that the �rst key pressed plays the�rst note, the second plays the second and so on.Since Bob is using a velocity sensitive keyboard, he can dictate the loudness of each note of \HappyBirthday" by how hard he plays the corresponding key. For example, if he wants to stress the note corre-sponding to the syllable \birth", then he may do so by striking the third key that he plays harder than theothers.What this example shows is a very simple paradigm for letting a performer play a simple piece of music,comprising a single line of notes, by simply playing any notes in sequence. The performer controls certainperformance parameters, in this case when to play a note, how loud to play it, and when to stop playing it.However, the performer does not need to learn the actual notes of the piece.Program A's job is rather simple. It �rst reads the input �le and organizes the notes into a linked list.Then it waits for the �rst Note-On event from the keyboard. Suppose it gets the event (Note-On 65 80)from the keyboard. This corresponds to the performer pressing F0. Upon getting that event, it matches itwith the �rst note on the list (C0), and sends the (Note-On 60 80) event to the keyboard, which then playsC0 at a velocity of 80. Suppose that Bob next releases the key. This generates an event such as (Note-Off65 64) (note that the velocity is typically ignored). Program A recognizes this as the end of the �rst note,and sends the event (Note-Off 60 64) to the keyboard, which in turn stops playing C0.Program A continues in this manner. When it gets a Note-On event, it plays the next note on the listby sending the appropriate Note-On event to the keyboard. When it gets a Note-Off event, it uses thekey �eld to determine which Note-On event the Note-Off matches. It then sends Note-Off for thatevent's key (C0 in the above example).Note that the Note-On and Note-Off events do not have to come in alternation, and notes may beheld as long as the performer wants, not in accordance with how the piece is written.For example, if Bob's keyboard emits the following sequence of events for playing the �rst four notes of\Happy Birthday": (i.e. Bob plays the notes F0, F0, G0, A0):(Note-On 65 80)(Note-Off 65 64)(Note-On 65 72)(Note-Off 65 64)(Note-On 67 85)(Note-On 69 80)(Note-Off 69 64) 5

Hap-py Birth-day to you! Hap-py Birth-day to you!

3
4

3
4Figure 4: Happy Birthday, melody and accompaniment(Note-Off 67 64)Then Program A causes the following events to be played (C0, C0, D0, C0):(Note-On 60 80)(Note-Off 60 64)(Note-On 60 72)(Note-Off 60 64)(Note-On 62 85)(Note-On 60 80)(Note-Off 60 64)(Note-Off 62 64)Note that Bob holds the third note past when he releases the fourth note. This is recognized by ProgramA (which remembers the original identity of the third note played, in this case G0) and the appropriateNote-Off events are generated.5.2 Example 2: A more complex pieceNow, suppose Bob wants to play a slightly more complex piece of music, like \Happy Birthday" with someaccompaniment to the melody (Figure 4).We'll use a program called \Program B" to help Bob play this piece of music. As before, the piecemust be stored in a �le, but now there must be some information that relates notes to beats, or at the veryleast groups together notes that will be played more or less simultaneously. For example, the notes maypartitioned into \lines" as in Figure 5, and then translated into a �le as depicted in Figure 6.
Hap-py Birth-day to you! Hap-py Birth-day to you!

3
4 Line 1

3
4

Line 2

Line 3

Line 4Figure 5: Happy Birthday, partitioned into linesProgram B works in a similar manner to Program A. First, it reads the piece �le, and creates a datastructure that organizes the notes in time. An example is a linked list with a node for every beat of the pieceon which a note is played. We term this a \playable beat." The node is itself a linked list containing everynote that is played on that beat. An illustration of the linked list for \Happy Birthday" is in Figure 7.6

LINE 1
 C0 3/16
 C0 1/16
 D0 1/4
 C0 1/4
 F0 1/4
 E0 1/2
 C0 3/16
 C0 1/16
 D0 1/4
 C0 1/4
 G0 1/4
 F0 1/2

LINE 2
 REST 1/4
 A-1 3/4
 Bb-1 3/4
 Bb-1 3/4
 A-1 1/2

LINE 3
 REST 1/4
 C-1 3/4
 G-1 3/4
 G-1 3/4
 C-1 1/2

LINE 4
 REST 1/4
 F-2 3/4
 C-1 3/4
 C-1 3/4
 F-2 1/2Figure 6: Happy Birthday with accompaniment, partitioned into lines and translated into a �le. (Notation:Note durations are speci�ed using fractions. For example, 1/4 is a quarter note, 1/8 is an eighth note, 3/16is a dotted eighth note, etc.)Now, for the �rst two notes, Program B works in the same manner as Program A: it waits for the �rsttwo Note-On events, matches them to the �rst two C0's of Line 1, and emits the corresponding Note-Onevents to be played by the keyboard. At this point, Program B is ready to play four notes (D0, A-1, C-1,F-2), and this is the where Program B di�ers signi�cantly from Program A. There are several options thatProgram B has:

List

C0 C0 D0 C0 F0 E0 C0 C0 D0 D0 G0 F0

A-1 Bb-1 Bb-1 A-1

C-1 G-1 G-1 C-1

F-2 C-1 C-1 F-1Figure 7: Happy Birthday, melody and accompaniment, converted into a linked list of playable beats.� When the next Note-On event comes in, generate Note-On events for all four notes, and send themall to the keyboard. When the Note-Off event corresponding to the Note-On event comes in, turnall four notes o�. This is an attractive option, but one that requires some careful decisions to be made.We will look at it later in Sections 5.5 and 9. For Program B, we will assume that Bob will press fourkeys to play the four notes.� Since the piece speci�es that all four notes are to be played at the same time, a reasonable decisionfor Program B might be to wait for four Note-On events to be generated. When this happens, theevents are sorted by their key's, and then each event is matched to one of the notes. The event with7

the smallest key is assigned to the lowest note (F-2), the event with the next smallest key is assignedto the second lowest note (C-1) and so on. Then Note-On events are generated for each note, eachevent using the same velocity as its corresponding Note-On event. Each note is turned o� when theappropriate Note-Off event is generated by the keyboard. Thus, Bob controls the loudness of eachnote individually, and how long it is held. For example, he probably will play the D0 louder than therest, but will hold the other three notes while he plays the C0 and E0 of Line 1.� Although the above solution is nice, performers often do not play all notes on one beat simultaneously.For example, they may play the highest or lowest note �rst for emphasis, or they may want to ripplethe chords of the accompaniment. Therefore, if Program B is really to deliver Bob the feeling of hearingwhat he plays when he plays it, it has to generate Note-On events as soon as it receives them |it cannot wait to get all four and then play them. This means that Program B should match eachNote-On event to one of the four notes as soon as the event arrives. In other words, it has to guess.This guessing may be done by simple heuristics, such as using information about which keys werematched to previous notes on each line, but in the end, it is just a guess. (The guessing process will beelaborated upon in Section 5.4). Program B then generates the proper Note-On event, and of course,when the corresponding Note-Off event arrives, it turns the note o�.� Finally, a last option is to employ either of the two solutions above, but only to accept Note-Onevents that are played within a certain time t of each other (for example, 1/10 second). If, t secondsafter the �rst Note-On event is played, no other Note-On events are generated, then the three notesthat were not played are skipped, and Program B moves onto the next playable beat. This lets Bob\make a mistake', for example, by only playing three notes on the third playable beat rather than four.We will assume that Program B implements the last two options: each Note-On event causes ProgramB to guess which note the event matches, and to emit aNote-On event instantly. However, if too much timeelapses after the �rst Note-On event for a beat, the rest of the notes on that beat are skipped. ProgramB thus lets Bob play any piece of music by playing a key for every note of the piece. As such, Bob hascontrol over every note of the piece: its loudness, when it is played, and when it stops playing. Granted,Bob must have some understanding of how Program B matches the notes he plays to the notes of the piece,but experience has shown that this matches a performer's intuitive notion about which notes be matched towhich events.5.3 Control EventsAt this point, it is convenient to talk about control events (such as pedaling and program changes). Thesimplest thing to do with these events is to pass them straight back to the instrument. For example, if thepedal is depressed, then the computer will get a Pedal-down event. It should instantly send that eventback to the instrument. By passing control events back to the instrument, Bob may employ the pedalsin the exact same manner as on a real piano. For example, the damper pedal will allow notes to be heldpast their Note-Off events, just as on the piano. Performing a program change allows Bob to change the\instrument" while he is playing.Obviously, other alternatives are possible. For example, a particular control event can be de�ned toterminate Program B, or skip to the next beat. However, certain control events (such as the pedal orprogram changes) are best passed back to the instrument.5.4 Matching HeuristicsWhen more than one note is to be played on a beat, the notes are sorted by their keys. Ideally, the lowestof these notes should be matched to the lowest note that Bob plays, the second lowest to the second lowest,and so on. However, since the matching must be performed before all the notes are played, Program B mustguess.It is possible to think of many matching heuristics for this guessing. In this section, I will describe theone that I implemented. In practice, I and others have found this to work well. In other words, it is natural8

for a performer to play in such a way that Program B guesses correctly a large percentage of the time, andtherefore that Program B produces music that sounds to Bob like what he means to be playing.First, the lines are partitioned into two groups: left-hand lines and right-hand lines. The left-hand linesare to be played by the left hand, and the right-hand lines are to be played by the right hand. By convention,I divide the keyboard into two parts | the notes below middle C, and the notes above and including middleC. Any note played that is below middle C is automatically assigned to the left hand, and any note at orabove middle C is assigned to the right hand. Note that the notes that the computer plays are unrestricted.The left hand can cause any note on any part of the keyboard to be played. However, the left hand can onlypress keys below middle C.
LINE 1
 C0 3/16
 C0 1/16
 D0 1/4
 C0 1/4
 F0 1/4
 E0 1/2
 C0 3/16
 C0 1/16
 D0 1/4
 C0 1/4
 G0 1/4
 F0 1/2

LINE 2
 REST 1/4
 A-1 3/4
 Bb-1 3/4
 Bb-1 3/4
 A-1 1/2

TIELINE T1 2 95
 REST 1/4
 C-1 3/4
 G-1 3/4
 G-1 3/4
 C-1 1/2

TIELINE T2 2 100
 REST 1/4
 F-2 3/4
 C-1 3/4
 C-1 3/4
 F-2 1/2Figure 8: Happy Birthday with accompaniment, translated into a �le where lines TL1 and TL2 are playedwith the Note-On and Note-Off events of line LH1Next, for each line in the input �le, Program B remembers the key value of the last Note-On eventthat matched to a note in that line. When Program B has to match a Note-On event to a note, it choosesthe line whose last Note-On event most closely matches the current Note-On event. Then, when all theNote-On events for a playable beat have been played, Program B assesses how well it guessed. If it guessedcorrectly, then it records the key values that matched for each line, remembering each for the next matching.However, if it guessed wrong, then it sorts the key values of all the Note-On events, and remembers thevalues that would have been correct for each line. These are then used to perform the next matching.The actual implementation is more complex than the above description, but the above description cap-tures the basic idea. As stated, experience has shown that this method works well in practice.5.5 Example 3: Playing multiple notes on one Note-On eventIn this section, we will describe Program C, which is more powerful than Program B. What it does is allowmultiple notes to be played on single Note-On events. For example, suppose Bob wants to play \HappyBirthday" as shown in Figure 4 in the following way. The notes on the upper bar will be played by his righthand, and the notes on the lower bar will be played by his left hand. Moreover, he would like to be ableto play each chord of the left hand with only one note. What Bob does is annotate the input �le to showProgram C what he wants to play. An example of such an annotation is in Figure 8. This looks much likeFigure 6 with the following di�erences:� Lines are speci�ed as left-hand (LH) right-hand (RH), or \tie- lines (TL).� Each tie line is linked to another line, and this link is annotated with a percentage.9

Program C reads the �le, and creates its linked list like Program B. However, only left- and right-handnotes are in this linked list. The notes in the tie lines are linked to the notes in the lines to which they aretied, and these links are annotated with percentages. The data structure for the �le in Figure 8 is picturedin Figure 9.
List

C 0 C 0 D 0 C 0 F 0 E 0 C 0 C 0 D 0 D 0 G 0 F 0

A-1 Bb-1 Bb-1 A-1

95% 100% 95% 100% 95% 100% 95% 100%

C-1 G-1 G-1 C-1F -2 C-1 C-1 F-1Figure 9: The data structure for the �le in Figure 8.Like Program B, Program C matches Note-On events to notes in the linked list. However, it does notmatch to notes in the tie lines. If it matches a note that has other notes tied to it, then it emits Note-On events for the note and the tied notes. The velocity of the note itself is equal to the velocity of theNote-On event. The velocity of each tied note is equal to the product of the event's velocity and the tiednote's percentage. (Although not shown in the examples, percentages can be greater than 100%). When theNote-Off event comes in for a note with tied notes, then Note-Off events are emitted for all the notes.In the above example, each tied note has the same starting time and duration as the note to which it istied. This does not have to be the case. For example, suppose Bob would like to play \Happy Birthday" bysimply playing the notes of the melody. One way for Bob to do this is to change the �le so that line LH1becomes \LINE TL3 RH1 85", and to change lines TL1 and TL2 so that they tie to RH1 (with percentagesof 81 and 85 respectively) instead of LH1. Then the data structure for the piece looks like Figure 10.
List

C 0 C 0 D 0 C 0 F 0 E 0 C 0 C 0 D 0 D 0 G 0 F 0

85% 85% 85% 85%

81% 81% 81% 81%

85% 85% 85%
85%

A-1 Bb-1 Bb-1 A-1

C-1 G-1 G-1 C-1

F -2 C-1 C-1 F-1Figure 10: Tying all notes to RH1.Now, when Bob plays the third note of the piece, four Note-On events are generated. However, whenhe releases that note, only the Note-Off event for D0 is generated. The Note-Off events for the otherthree notes are tied to the Note-Off event for the �fth note of the piece.6 The Process, RestatedThus, the process of computer-assisted performance is relatively straightforward. The piece is encodedin a �le along with annotations stating the relative order in which notes are expected to be played, and10

how multiple Note-On and Note-Off events may be tied to single Note-On and Note-Off events. Aprogram then reads this �le and converts it into a data structure which orders the notes by when they areexpected to be played. It then receives events from the performer, and either passes these events straightthrough to the synthesizer (in the case of control events), or matches them to the notes of the piece, andemits Note-On and Note-Off events for the matching notes. When multiple events are expected, theprogram must use some heuristic to perform the matching. A suitable heuristic is one which partitions thekeyboard into regions for left- and right-hand notes, and then uses information about past matchings to helpchoose which notes to match within each partition.7 EnhancementsThe above description describes the general the software process. There are a few enhancements to thisprocess which in practice make the software easier to use, especially with more complex pieces of music.7.1 Grace NotesMany classical pieces of music employ grace notes as ornamentation. The challenge with incorporating gracenotes into the software is their relationship to other notes. If we are only interested in playing one melodicline, then a grace note poses no problems { a program like Program A only cares about the relative orderingof a sequence of notes. However, if one line of notes includes grace notes and another line does not, it istypically up to the performer to decide how those notes are played relative to one another. For example,Figure 11(a), shows a two-note chord with two grace notes ornamenting the topmost note. Figure 11(b)and (c) show two possible ways of playing these grace notes. Either way is perfectly valid, and up to theperformer. (a) (b) (c)Figure 11: Music with two grace notes, and two valid ways of playing them.This poses a problem to Programs B and C, because the program cannot assign a playable beat to thegrace notes without deciding a priori whether to play the grace notes on or before a beat. The solution thatI have adopted is to treat grace notes as special notes that may be played at any time before or on the beatthat they precede in the music.7.2 TrillsTrills provide a special challenge to this paradigm because the music does not specify how many notes areactually played during a trill. That is left up to the performer who often doesn't play a set number of notes,but simply trills as fast as he or she can for the required period. Like grace notes, trills are treated as specialnotes in my software. When the computer receives a Note-On event that it matches a note that is to betrilled, it then waits to receive a Note-On event for any key that is a half or whole step away from the keythat triggered the �rst Note-On event. These two keys are then set to be the trill keys for that note, andas long as these notes are alternated, the trill is continued. However, the software continues to attempt tomatch other notes, and as soon as the note following the trill in the trill's line is matched, the trill is stopped.Thus, to perform a trill, the performer simply trills two adjacent keys on the keyboard. An easy way tostop the trill is for the performer to play a di�erent key adjacent to either of the trill keys. This typicallymatches the next note in the trill's line and thus stops the trill.11

7.3 Ripples (rolled chords)Some pieces of music (an obvious example is Chopin's Etude, Opus 10/11) specify the performer to \roll"a chord instead of playing all notes simultaneously. Ripples necessitate a change in the matching heuristicde�ned above. Instead of trying to use past information to match the notes of a ripple, the computer insteadsimply matches the �rst note played to the lowest note, the second to the second lowest note, and so on.Otherwise, the performer may end up rolling seemingly random notes in the chord.7.4 Mistakes, hand separationIn Section 5.2, a certain class of mistakes { hitting too few notes when playing a chord { is addressed. Itis suggested that if too much time passes between Note-On events, Program B should assume that theperformer has omitted some Note-On events, and it should move on to the next beat. There are a fewother classes of mistakes that may be addressed as well. First is the case of the performer hitting too manynotes on a beat. For example, suppose that four notes are to be played on a chord, and the performer presses�ve keys. As described above, Program B will play all four notes of the chords, plus a note from the nextplayable beat. The program may instead be modi�ed to keep track of the tempo between adjacent beats.This is a function of the actual time between when notes from these beats are played, and the duration of thetime between the beats in the music (e.g. a quarter note). If a Note-On event occurs within a certain timeof the previous beat (for example, 0.1 second), and the previous tempo suggests that the next note shouldnot occur for a much greater period of time (e.g. 0.5 second), then the program can discard the Note-Onevent (and subsequent Note-Off event) as a mistake.When lines are partitioned into right and left hands, there may be playable beats (for example, the �rstbeat of Happy Birthday), when the program is expecting to get Note-On events from only one hand. Aquestion is then what should be done when instead the performer plays a note on the other hand? Thereare three possible solutions to this problem:1. Ignore the event (and of course the subsequent Note-Off event).2. Skip the current beat and subsequent beats until there is a beat which expects a note from that hand.3. Change the data structure so that two lists are maintained { one for the left hand and one for the righthand { and process these lists independently, so that the hands each play in their own tempo. I callthis \hand separation".The solution that I have adopted in my code is a hybrid of these three. First, the music �le keeps explicittrack of the measures, and measures may be speci�ed as \hands separated" or \hands together" (the defaultis hands together). If the hands are separated, then within a measure the two hands may play at di�erenttempos. However, if one hand reaches the beginning of the next measure before the other, then both handsskip to the beginning of that measure. If the hands are together, then the tempo estimation (where tempois a function of the speed at which the two previous beats were played) is used to decide whether the eventis ignored or whether beats should be skipped.For fast pieces where one hand is playing many more notes than the either (e.g. starting at measure135 in Chopin's third ballade), hand separation makes playing the piece more natural. For slower pieces, orwhen both hands play in tight synchronization, playing with the hands together works better. In either case,it sometimes happens that the performer makes some mistakes and can't �gure out where he is supposed tobe in the music. A graphical user interface would help greatly with this problem.8 Current StatusThe current status of this project is as follows. I have de�ned a format for the piece �les, and written somecode that lets a user create these �les in several stages using a keyboard and metronome. Since the formatis an ASCII format, the user may also create �les with a standard text editor. The �les may be annotatedwith grace notes, trills, ripples, and the speci�cation of hands together/apart. I have put many classicalpiano pieces into this format, which may be obtained on the web at:12

http://www.cs.utk.edu/~plank/plank/music/musfilesI have written a version of Program C that runs on PC's using the Linux or FreeBSD operating systems.My keyboard is connected to the computer through the joystick port of the computer's sound card, andare accessed using a driver from 4Front Technologies called \Open Sound System" (http://www.4front-tech.com/linux-x86.html). The program written in C (approximately 3000 lines), and has a Tcl/Tk frontend (136 lines). Besides allowing the performer to play pieces in real-time, Program C creates a MIDI �leso that the performer can later play back and post-process what he has played. All the above enhancements(e.g. grace notes, trills, ripples, mistakes, hand separation) have been incorporated.The program is available on the web at:http://www.cs.utk.edu/~plank/plank/music/musplayand MIDI �les containing some performances created with this program are available at:http://www.cs.utk.edu/~plank/plank/music/midifiles9 HistoryAs stated in the introduction, the idea behind this method is not new. In May, 1977, U.S. Patent 4,022,097entitled \Computer-aided musical apparatus and method" was issued to Christopher E. Strangio. In thepatent, Strangio describes a machine where sequences of notes may be stored in one of many memory banks.A keyboard is then partitioned into regions, and whenever a key from a certain region is pressed, the nextnote from that region's memory bank is played. This patent was the inspiration behind keyboards fromCasio where special keys triggered the playing of sequences of stored notes. Strangio's patent has expired.Strangio's patent inspired some other pieces of work, such as the "radio drum" by Max Matthews fromStanford University, where one conducts musing a special pad that senses where a conducting wand is, andadjusts the tempo and volume of a piece of music accordingly. Additionally, Stephen Malinowski implementedStrangio's idea on MIDI-based keyboards as part of his Music Animation Machine 1Finally, a piece of software called \Instant Pleasure" was written and marketed for Macintosh computers,which targeted Strangio's patent for MIDI-based keyboards. I do not have any further information on\Instant Pleasure."One di�erence between these pieces of work and the method described above is the playing of multiplenotes on a beat. Strangio's patent deals with ths problem by partitioning the keyboard into regions, andeach region is responsible for a speci�c collection of notes. Evidently his machine had two such regions, onefor the left hand and one for the right hand. Thus, the performer could strike two keys on a beat { one withthe left hand, and one with the right hand. If multiple notes were to be performed on a beat, they had to betriggered either by the key from the left hand or the key from the right hand. Malinowski's software is a littlemore limited { only one key is pressed for each beat. If multiple notes are to be played on a beat, they mustall be triggered by one key press. As depicted in Malinowski's video (see his web page for a description), hehas developed some very creative techniques for playing fast pieces with his software.The method in my software allows the performer to specify an arbitrary number of key presses per beat.They keyboard is partitioned into two regions { one for the left hand and one for the right hand. Withineach region, the input �le can specify that any number of notes be played per beat. The matching of keyto note is performed with the heuristic of section 5.4. The intent of this feature is to give the performermore control { chords feel like chords, and multiple melodic lines can be played by a single hand, which hasexplicit control over each line.1Please see http://www.well.com/user/smalin/ for a description of the Music Animation Machine.13

10 AcknowledgmentsThe author thanks Don Pederson and Henri Casanova for their discussions on this research area, and StephenMalinowski for encouragement and providing much needed historical perspective.

14

