
IBP-MIME: Controlled Delivery of Large Mail FilesWael R. Elwasif Micah Beck James S. PlankApril 2, 1999Technical Report UT-CS-99-421Department of Computer ScienceUninversity of TennesseeApril 2, 1999AbstractThe current model of mail delivery over the Internet guarantees that an email message, whendelivered, will have all its parts present at the recipient's mail server. The message is typicallyspooled pending retrieval by the recipient at a later time. This model has serious e�ciency problemswhen handling messages that contain large �les. Such messages impose a heavy burden on storageresources at the mail server, where they can occupy space for an inde�nite period of time pendingretrieval. The situation is made worse when the message is directed to multiple users who share thesame mail server. In this paper we present a new model for delivery of email messages containinglarge �les. The proposed model separates the text part of the email message from the non-text part,and entrusts the latter to a set of network storage servers that keep it until prompted for deliveryby the recipient. The proposed model makes use of new initiatives in distributed storage that arepart of the Internet2 project. In addition, it allows for recipient initiated preprocessing of the sent�le remotely, before actually receiving it. This option is becoming more feasible with the advent ofcomputational servers such as NetSolve and can have wide implications in areas such as electroniccommerce and security.1 IntroductionThe use of email as a content-exchange medium has gained tremendous momentum over the lastdecade with the almost universal Internet connectivity in academia and the research community, andthe relatively recent commercialization of the Internet. As the contents of email messages evolvedfrom simple text messages to messages containing (usually large) binary �les, schemes were developedto address the issue of encoding and decoding such �les for transport using existing mail protocols (inparticular SMTP [JP85]) and tools (e.g. the uuencode and uudecode tools). The development andsubsequent standardization of MIME (Multipurpose Internet Mail Extensions) [RW96] has made theexchange of non-text content via email an easy task. However, these schemes, while addressing theissue of content encoding, do not address the e�ciency issues introduced through the use of existingemail delivery protocols, which were designed when smaller messages were the norm.Users who wish to exchange large �les, but are geographically separated by large distances, haveseveral options in carrying out such an exchange.1. The sender can store the �le(s) in question on disk or tape and send it to the intended recipient(s)via snail mail. This approach, while very slow, may be the only viable method for extremelylarge data sets common in certain research �elds (e.g. astrophysics).1

2. Alternatively, the sender can use a MIME-enabled mailer to send the �le(s) directly to thereceiver using existing mail protocols. While faster than surface mail, this approach has manydrawbacks. First, it consumes resources on both the sender's system (in the mail queue) andon the receiver's system (in the mail spooler). If the attached �le is large enough, there maynot be enough space on the queue/spooler to accommodate it. Additionally, the act of MIMEencoding expands the �le, making it larger still. If the recipient is connected to the spooler viaa slow link (for example via Sun NFS over a 10 Mb Ethernet), the performance of the user'smailer may su�er signi�cantly until �le is moved from the spooler. And �nally, if the senderwants to broadcast the �le to a number of recipients, the �le uses up spooling resources onevery recipient's system, or multiple copies on the same system.3. A third approach is to use one of the existing �le transfer protocols, such as FTP [Pos82] orHTTP [FGFBL97]. With this approach, the sender exports the �le on an FTP or HTTP server,and emails the address to the recipient. The recipient, upon reading the email, downloads the�le from the sender's FTP or HTTP server. This approach solves many of the problems of theabove two methods, especially those regarding resources on the recipient's spooler. However,there are drawbacks. If the network path between the sender and the recipient is slow, thenit may take a long time for the recipient to download the �le. Instead of consuming resourcesat the receiver's site, it consumes resources at the sender's site, and those resources must bereclaimed at the sender's discretion once he/she knows that the receiver has downloaded it. Anadditional drawback is that by serving the �le with FTP or HTTP, it either becomes visible tothe entire world, or the recipient must be authenticated by the server by a password or similarmeans. Finally, there may be administrative problems in putting the �le on such server.In this paper, we propose a di�erent delivery mechanism for large �les that has better performanceand fewer administrative details. It is based on the ability to explicitly manage storage in the network,and therefore to use the network to bu�er messages. This ability is at the core of the Internet2Distributed Storage Infrastructure (I2-DSI) project [BM98], described below in Section 2. We makeuse of a piece of middleware called the Internet Backplane Protocol (IBP) that allows us to manageand use storage in the network. The result is a mechanism that we call IBP-MIME.The basic structure of IBP-MIME is as follows. The sender stores the �le to an IBP server inthe network (preferably close to the recipient) and mails the recipient a pointer. Upon receiving themail, the recipient downloads the �le from the network, and then deletes it. While similar to theFTP/HTTP method described above, it has four distinct advantages. First, neither user expendsextra storage resources for spooling or bu�ering. Instead, the network is used as a bu�er. Of course,the success of this approach relies on there actually being storage in the network, which is currentlya reality under I2-DSI. Second, the sender can direct the �le to be stored in a network location closeto the receiver. Thus, when a receiver downloads the �le, he/she will receive it much faster thanwith anonymous FTP or HTTP. Third, the receiver deletes the �le on the network storage afterdownloading it. Fourth, the �le is neither visible to the entire world, nor protected by a password-based scheme, making the transmission both safe and convenient.One can view this method as a hybrid of email and anonymous FTP: the sender starts the �lemoving toward the receiver, who completes the communication.The rest of this paper is organized as follows. The I2-DSI project is detailed in section 2. Weprovide relevant details of the IBP storage server architecture in section 3. In section 4, we describethe elements in the proposed IBP-MIME architecture. Applications that can make use of the proposedarchitecture, implementation issues, and deployment are discussed in section 5. Finally, we presentthe conclusions and possible areas of future work in section 6.2 I2-DSIThe Internet2 Distributed Storage Infrastructure (I2-DSI) initiative is one part of the Internet2project. I2-DSI's stated goal is to resolve accessibility issues associated with sharing and using2

Internet-based educational content [BM98]. A fundamental principle of I2-DSI is that explicit storagein the network is necessary to achieve high performance in future generation networking. To that end,the I2-DSI project has received donations of (currently �ve) large storage servers that are deployedthroughout the United States. At least �ve more have been promised by various industry a�liates.IBP-MIME �ts the mission of the I2-DSI project, and the storage servers in the I2-DSI deploymentare available for use by the IBP-MIME project. As described below in section 3, IBP is structuredso that private storage owners may \loan" their resources to the I2-DSI pool without impactingthemselves adversely. Thus, the requirement of network storage IBP-MIME is one that is currentlymet by the I2-DSI deployment, and should continue to be met in the future.3 IBP: The Internet Backplane ProtocolThe Internet Backplane Protocol (IBP) is a piece of middleware for the management and accessingof remote storage. IBP is structured as server daemons invoked by the storage resource owners, anda library of client calls to be linked with client applications. IBP may be envisioned as providing agateway to distributed storage services as DNS does to directory services. Motivation for IBP andcomplete description of the interface may be found in [BPM98]. We describe the features relevant toIBP-MIME below.3.1 The IBP serverEach IBP server manages storage that it serves up to the clients in the form of append-only bytearrays. The IBP server is designed to run without any special access privileges. IBP servers maybe started by any user on a machine, and servers work subject to policies that allow the initiatinguser some control over how IBP makes use of the storage. One of the policies is that the IBP servermay use spare physical memory, or it may use disk space that the initiating user may revoke eitherarbitrarily or on a set schedule. The intent of this feature is to encourage users to donate theirresources to IBP, since they can reclaim the resources rather easily.In its current form, IBP supports two types of storage: reliable (guaranteed) storage and volatilestorage which can be reclaimed by the initiating user if the need arises. Clients choose which typeof storage best meets their requirements (e.g. volatile storage can be used to implement replicationservices). In addition, the IBP server supports time-limited storage areas, which are purged with noclient action at the expiration of a speci�ed life time, and permanent storage areas which are purgedonly at the client's request. The combined e�ect of these two properties (reliability and life time)determine if a speci�c storage area exists on the IBP server at any point in time.3.2 The IBP client interfaceIBP client calls may be made by anyone who can attach to an IBP server. The IBP clients communi-cate with the servers via a TCP/IP stream. Clients initially gain access to byte arrays by allocatingstorage on an IBP server. If the allocation is successful, the server returns three capabilities to theclient: one for reading, one for writing and one for management. These capabilities can be viewedas names that are assigned by the server. Currently, each capability is a text string encoded withthe IP identity of the IBP server, plus other information that is intended to be interpreted onlyby the server. Applications may pass IBP capabilities among themselves without registering theseoperations with IBP. In this respect, IBP capabilities are like URL's in web systems.A client needs to identify an IBP server only for the initial allocation of storage. All other requestsare performed through the capabilities. Below we present the subset of the IBP client interface thatis relevant for implementing IBP-MIME.� IBP capability set IBP allocate(host, size, attributes)This call allocates a new storage area on the IBP server running on host. The client speci�es3

attributes that determine the area's maximum allowable size, its reliability and its life time.On success, the server returns a trio of capabilities that control access to the new storage area.� IBP store(write-cap, data, size)In this call, a chunk of data in memory of size size is appended to any previous data at thestorage area accessed through the write capability write-cap. Note that any client may callIBP store(), so long as the capability write-cap is valid.� IBP read(read-cap, buf, size, offset)The IBP read() call allows a client to retrieve size bytes of data that has been stored at thestorage area accessed through the read capability read-cap at the speci�ed o�set.� IBP copy(read-cap, writ-ecap, size, offset)This call copies size bytes, starting at o�set o�set from the storage area accessed through theread capability read-cap to the end of the storage area accessed through the write capabilitywrite-cap. IBP copy() is an example of a third-party interaction { client A employs IBP copy()to instruct server B to send bytes directly to server C. This is one of the primitives that makesIBP di�erent from other storage management systems such as distributed �le systems, databasesand content servers.� IBP manage(manageCap, cmd, capType, info)This call allows the client to perform certain management operations on the storage area ac-cessed through the management capability manageCap. The speci�c operation is speci�ed inthe cmd parameter and capType speci�es the target capability for some commands (read ca-pability or write capability). Info is an in-out parameter that conveys information back andforth between the client and the IBP server. The current implementation of IBP supports man-agement operations to increase the reference count to a capability, decrease such a referencecount, increase/decrease the maximum storage area, and probe the storage area for its currentstate. Decrementing the reference count of a read capability can result in the storage area beingdeleted from the IBP server (if the reference count drops to zero).Currently, all IBP client calls are synchronous in that they block until the call is completed. Ifclients are threaded, this should impose no restrictions of client functionality or performance. If thesynchronous calls should prove to be a problem to non-threaded clients, asynchronous calls will beimplemented.4 The IBP-MIME architectureThe basic IBP-MIME architecture is outlined in �gure 1. The sender, instead of MIME-encodingan attachment before sending, performs an IBP-staging operation that moves the attached �le (un-encoded) to one (or more) IBP servers in the IBP cloud(using IBP allocate() and IBP write() calls).This operation produces a �le containing meta-data that describes the staged �le (this �le basicallycontains the access capabilities to the staged �le, along with any other relevant information that couldbe of use to the receivers). This returned �le is MIME encoded, given an extension that identi�es itas a pointer to an IBP-staged �le (e.g. .ibp), and sent as an attachment along with any text message.When the recipient retrieves the email message from the mail server, a special IBP-MIME handleris invoked to remotely process the staged �le. The complexity of such processing depends on �le size,type, and intended use by the recipient. The recipient could simply download the �le to localstorage (using IBP read()) and invoke a local application on it (e.g. an image viewer for an image�le). Alternatively, the recipient may decide to direct the received �le to a local IBP server (usingIBP copy()) for future retrieval and processing. Another option is for the recipient to use an IBP-enabled (possibly remote) computational server to process the incoming �le, thus eliminating theneed for local delivery altogether. This third alternative can be useful in many areas as will beoutlined in section 5. 4

Mailed File

IBP Cloud

SenderMailed Text

Mailed File

RecipientsFigure 1: �le delivery using IBP-MIMEIn its simplest form, an IBP-MIME communication makes use of a single IBP server that isaccessed by both the sender and receiver(s). This basic scheme can be enhanced to make better useof existing resources. For example, the �le can be transferred progressively closer to the recipient(s),with a distributed naming service built on top of IBP used to retrieve the current location of the �leat time of actual delivery. Other enhancements can be achieved through replicating the staged �leat one or more IBP servers that are located close to various recipients of the original email message.5 Applications and implementation5.1 ApplicationsIn this section, we list some applications that could make use of the proposed IBP-MIME architecture.We can broadly classify such applications into three main categories.� Wide area collaborative computing: Scientists collaborating on research projects can makeuse of the proposed architecture to facilitate the exchange and processing of massive data �les.By combining the network storage model embodied in IBP with the availability of computationalservers such as NetSolve [CD97], scientists can have access to computational services withlittle or no administrative overhead. As an example, a scientist can use IBP-MIME to send ahuge uncompressed video �le to a colleague, who can instruct the local IBP-MIME handler toforward the incoming �le directly to to an IBP-enabled NetSolve server for processing and/orenhancements, before examining it and discussing the results with the sender. This could beparticularly useful in areas such as medical imaging, where �les in the 2-20GB range are notuncommon.� Commercial network services: The receiver may initiate a pre-delivery processing of theincoming message via a commercial third party. One example of this scenario would be a virusdetecting server checking all attachments before delivery to the target user. By having themessage remotely stored and checked before delivery, any chance of a security risk is virtuallyeliminated.� Network and storage management: This area of applications aims at improving utilizationof network and storage resources through control of the large �le movement. A best e�ortalgorithm can be developed to progressively move the �le in transit closer to the recipient,while not imposing unnecessarily strict requirements on available network resources. In the5

current delivery model, the entire email message is delivered as soon as possible to the targetsystem, while the large �le part of the message may not be accessed/needed until a later time.By having IBP hubs along the way, �le movements can be performed in such a way so as notto cause network congestion along the way. This issue is linked to the Quality of Service (QoS)in networking, which is currently an active area of research.5.2 Implementation and deploymentWe have successfully implemented the client and server parts of the IBP storage server architecture.Currently there are several IBP servers running on several machines that are part of the I2-DSIinfrastructure. A prototype for the IBP-MIME has also been developed and tested successfully withthe existing IBP servers. We are currently working to expand the base of installed IBP servers andenhance the functionality available to end users via IBP-MIME.5.3 An exampleIn this section we present an example that illustrates the advantages obtained through the use ofIBP-MIME. Assume that a user at the University of Tennessee campus wishes to send an email thatcontains a large video �le to a user at Princeton University. We present the expected transfer andretrieval time using regular mail protocols, and using IBP-MIME through the I2-DSI IBP serverrunning at University of North Carolina. The bandwidth values were determined empirically on awork day in March 1999. We use the following nomenclature:Original �le size (Sorigin) = 5:355 MBMIME-encoded �le size (Smime) = 7:24 MBBandwidth from UT to Princeton (BWUT!P) = 0:1775 MB/Sec.Bandwidth from UT to DSI machine (BWUT!DSI) = 0:2571 MB/Sec.Bandwidth from DSI to Princeton (BWDSI!P) = 0:4601 MB/Sec.NFS Disk to memory bandwidth (BWNFS) = 0:166 MB/Sec.DSI machine disk to memory bandwidth (BWDSI) = 9:865 MB/Sec .Method Operation Formula Time (Sec.)Regular mail Send Smime � (2BWNFS + 1BWUT!P) 128:017Retrieve SmimeBWNFS 43:614HTTP/FTP Retrieve Sorigin � (1BWNFS + 1BWUT!P) 62.43IBP-MIME Send Sorigin � (1BWNFS + 1BWUT!DSI + 1BWDSI) 53.63Retrieve Sorigin � (1BWDSI + 1BWDSI!P) 12.182Table 1: Large �le transfer using IBP-MIMEThe Send operation refers to the steps taken by the sender to deliver the �le to a location where itcan be retrieved by the receiver. The Retrieve operation consists of all actions taken by the receiverto fetch the �le from a known location. We assume that the time to transfer the text part of the6

message is relatively small and will not signi�cantly a�ect the results. We also assume that all serversinvolved are not heavely loaded. As can be seen from Table 1, the retrieval time experienced by therecipient is signi�cantly lower when using IBP-MIME. Although the total send and retrieve time isminimized with HTTP/FTP, in situations where the receiver reads the mail more than 1 minuteafter the sender sends it, the IBP-MIME solution is far preferable..6 Conclusions and future workIn this paper, we have presented an architecture for controlled delivery of large �les via email usingan infrastructure of distributed storage servers. The proposed model allows for better utilization ofresources on the end users' systems through the use of the network itself as a large bu�er via theIBP protocol. We envision a deployment of IBP servers that closely follows the current pattern ofbandwidth installation, with massive IBP servers close to the Internet backbone, and more (albeitsmaller) IBP servers closer to end users.There remain several important questions that merit further investigation regarding the e�cientuse of IBP-MIME. Foremost among them is the issue of fault tolerance: how to guard against mailloss due to IBP server crash? The scalability of any algorithm that is used to manage �le movementbetween various IBP servers is also important. Work is also needed to formulate e�cient policiesfor fair storage allocation on the intermediate IBP servers and in securing transmitted �les while intransit.The IBP code is currently available at http://www.cs.utk.edu/~elwasif/IBP. IBP-MIME codecan be found at http://www.cs.utk.edu/~elwasif/IBP-MIME.References[BM98] M. Beck and T. Moore. The Internet2 Distributed Storage Infrastructure project: Anarchitecture for internet content channels. Computer Networking and ISDN Systems,30(22-23):2141{2148, 1998.[BPM98] M. Beck, J. S. Plank, and T. Moore. IBP { the Internet Backplane Protocol: Two pagesummary. Technical Report CS-98-407, University of Tennessee, November 1998.[CD97] Henry Casanova and Jack Dongara. NetSolve: A Network-Enabled Server for SolvingComputational Science Problems. International Journal of Supercomputer Applicationsand High Performance Computing, 11(3), Fall 1997.[FGFBL97] R. Fielding, J. Gettys, H. Frystyk, and T. Berners-Lee. Hypertext Transfer Protocol {HTTP/1.1. http://www.ietf.org/rfc/rfc2068.txt, January 1997.[JP85] J. Reynolds J. Postel. File Transfer Protocol { FTP. http://www.ietf.org/rfc/rfc959.txt, October 1985.[Pos82] Jonathan B. Postel. Simple Mail Transfer Protocol { SMTP. http://www.ietf.org/rfc/rfc821.txt, August 1982.[RW96] P. Resnick and A. Walker. The text/enriched MIME Content-type. http://www.ietf.org/rfc/rfc1896.txt, February 1996.
7

