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Chapter 1

The MAGMA Library

The goal of the Matriz Algebra on GPU and Multicore Architectures (MAGMA)
project is to create a new generation of linear algebra libraries that achieve
the fastest possible time to an accurate solution on hybrid/heterogeneous ar-
chitectures, starting with current multicore4+multiGPU systems. To address
the complex challenges stemming from these systems’ heterogeneity, massive
parallelism, and gap in compute power vs CPU-GPU communication speeds,
MAGMA'’s research is based on the idea that optimal software solutions will
themselves have to hybridize, combining the strengths of different algorithms
within a single framework. Building on this idea, the goal is to design linear
algebra algorithms and frameworks for hybrid multicore and multiGPU systems
that can enable applications to fully exploit the power that each of the hybrid
components offers.

Designed to be similar to LAPACK in functionality, data storage, and inter-
face, the MAGMA library will allow scientists to effortlessly port their LAPACK-
relying software components and to take advantage of the new hybrid architec-
tures.

MAGMA version 0.2 is a release intended for a single GPU — see the
specifications in Section 3.1. MAGMA (version 0.2) includes the one-sided ma-
trix factorizations ans solvers based on them, including mixed-precision iterative
refinement solvers. The factorizations are provided in all 4 precisions — single,
double, single complex, and double complex. For each function there are 2
LAPACK-style interfaces. The first one, referred to as CPU interface, takes
the input and produces the result in the CPU’s memory. The second, referred
to as GPU interface, takes the input and produces the result in the GPU’s
memory. Work is in progress on the two-sided factorizations and eigen-solvers
based on them. Included is the reduction to upper Hessenberg form in sin-
gle and double precision. Included is also MAGMA BLAS, a complementary
to CUBLAS subset of CUDA BLAS that are crucial for the performance of
MAGMA routines. MAGMA uses standard data layout (column major) and
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can be used as a complement to LAPACK to accelerate the functions currently
provided.

The algorithm names are derived by the corresponding LAPACK names,
prefixed by magma_, and for the case of the GPU interface suffixed by _gpu.

MAGMA version 0.1 included the LU, QR, and Cholesky factorizations in
real arithmetic (single and double) for both CPU and GPU interfaces [5]. The
following list gives the additions that are now available in MAGMA version 0.2:

Complex arithmetic (single and double) LU, QR, and Cholesky factoriza-
tions for both CPU and GPU interfaces;

LQ and QL factorizations in real arithmetic (both single and double pre-
cision);

Linear solvers based on LU, QR, and Cholesky in real arithmetic (single
and double);

Mixed-precision, iterative refinement solvers based on LU, QR, and Cholesky
in real arithmetic;

Reduction to upper Hessenberg form in real arithmetic (single and double)

MAGMA BLAS in real arithmetic (single and double), including gemm
and trsm.

A reference performance is given in Chapter 4.



1.1 One-sided matrix factorizations

We use hybrid algorithms where the computation is split between the GPU and
and the CPU. In general for the one-sided factorizations, the panels are factored
on the CPU and the trailing sub-matrix updates on the GPU. Look-ahead tech-
niques are used to overlap the CPU and GPU work (and some communications).
Figure 1.1 illustrates this by quantifying the CPU-GPU overlap for the case of
QR in single precision arithmetic.

B Overhead
OcpPu

O CPU+GPU
B GPU

Time

1 2 3 4 5 6 7 8 9 10
Matrix size x 1,000

Figure 1.1: Time breakdown for the hybrid QR from MAGMA in single precision
arithmetic on GTX280 GPU and Intel Xeon 2.33GHz CPU.

In both the CPU and GPU interfaces the matrix to be factored resides on
the GPU memory, and CPU-GPU transfers are associated only with the panels.
The resulting matrix is accumulated (on the CPU or GPU according to the
interface) along the computation, as a byproduct of the algorithm, vs sending
the the entire matrix when needed. In the CPU interface, the original transfer
of the matrix to the GPU is overlapped with the factorization of the first panel.
In this sense the CPU and GPU interfaces, although similar, are not derivatives
of each other as they have different communication patterns.

Besides this common approach, the different algorithms have specific opti-
mizations motivated by the GPU architecture [4, 7].



1.1.1 Function magma_sgetrf

int magma_sgetrf(int *m, int *n, float *a, int *1lda,
int *ipiv, float *work, float *da, int *info)

SGETRF computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges.

The factorization has the form

A=P*xLx*xT
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix to be factored.
On exit, the factors L and U from the factorization
A = P+L*U; the unit diagonal elements of L are not stored.
Higher performance is achieved if A is in pinned memory,
e.g. allocated using cudaMallocHost.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).

WORK (workspace/output) REAL array, dimension >= N*NB,
where NB can be obtained through magma_get_sgetrf_nb(M).
Higher performance is achieved if WORK is in pinned memory,
e.g. allocated using cudaMallocHost.

DA (workspace) REAL array on the GPU, dimension
(max(M, N)+ k1)°2 + (M + k2)*NB + 2%NB"2,
where NB can be obtained through magma_get_sgetrf_nb(M).
k1l < 32 and k2 < 32 are such that
(max (M, N) + k1)%32==0 and (M+k2)%32==0.

INFO (output) INTEGER

= 0: successful exit
if INFO = -i, the i-th argument had an illegal value
if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equatioms.

< 0:
> 0:



1.1.2 Function magma_sgeqrf

int magma_sgeqrf(int *m, int #*n, float *a, int #*lda, float *tau,
float *work, int *lwork, float *da, int *info )

SGEQRF computes a QR factorization of a real M-by-N matrix A: A = Q * R.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(M,N)-by-N upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of min(m,n) elementary reflectors.
Higher performance is achieved if A is in pinned memory,
e.g. allocated using cudaMallocHost.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors.

WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = O, WORK(1) returns the optimal LWORK.
Higher performance is achieved if WORK is in pinned memory,
e.g. allocated using cudaMallocHost.

LWORK  (input) INTEGER
The dimension of the array WORK. LWORK >= N*NB,
where NB can be obtained through magma_get_sgeqrf_nb(M).

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued.

DA (workspace) REAL array on the GPU, dimension N*(M + NB),
where NB can be obtained through magma_get_sgeqrf_nb(M).
(size to be reduced in upcoming versionms).

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v’
where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and
v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).
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1.1.3 Function magma spotrf

int magma_spotrf(char *uplo, int *n, float *a, int *lda, float *work,
int *info)

SPOTRF computes the Cholesky factorization of a real symmetric
positive definite matrix A.

The factorization has the form
A = UxxT * U, if UPLO = ’U’, or
A =L =x L*xT, if UPLO = ’L’,
where U is an upper triangular matrix and L is lower triangular.

This is the block version of the algorithm, calling Level 3 BLAS.

UPLO (input) CHARACTER#*1
= ’U’: Upper triangle of A is stored;
= ’L’: Lower triangle of A is stored.

N (input) INTEGER
The order of the matrix A. N >= 0.

A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = ’U’, the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = ’L’, the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.

On exit, if INFO = O, the factor U or L from the Cholesky
factorization A = U*xT*U or A = L*Lx**T.

Higher performance is achieved if A is in pinned memory,
e.g. allocated using cudaMallocHost.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

WORK (workspace) REAL array on the GPU, dimension (N, N)
(size to be reduced in upcoming versions).

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.



1.1.4 Function magma_sgeqlf

int magma_sgeqlf (int *m, int *n, float *a, int *1lda,
float *tau, float *work, int *lwork, float *da, int *info)

SGEQLF computes a QL factorization of a real M-by-N matrix A: A =Q * L.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, if m >= n, the lower triangle of the subarray
A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
if m <= n, the elements on and below the (n-m)-th superdiagonal
contain the M-by-N lower trapezoidal matrix L; the remaining
elements, with the array TAU, represent the orthogonal matrix Q
as a product of elementary reflectors.
Higher performance is achieved if A is in pinned memory,
e.g. allocated using cudaMallocHost.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors.

WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = O, WORK(1) returns the optimal LWORK.
Higher performance is achieved if WORK is in pinned memory, e.g.
allocated using cudaMallocHost.

LWORK  (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize. If LWORK = -1, then a workspace query is
assumed; the routine only calculates the optimal size of the WORK
array, returns this value as the first entry of the WORK array,
and no error message related to LWORK is issued.

DA (workspace) REAL array on the GPU, dimension N*(M + NB),
where NB can be obtained through magma_get_sgeqlf_nb(M).
(size to be reduced in upcoming versions).

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v’
where tau is a real scalar, and v is a real vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
A(1:m-k+i-1,n-k+i), and tau in TAU(i).
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1.1.5 Function magma sgelqf

int magma_sgelqf(int *m, int #*n, float *a, int *lda, float *tau,
float *work, int *lwork, float *da, int *info)

SGELQF computes an LQ factorization of a real M-by-N matrix A: A =1L * Q.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and below the diagonal of the array
contain the m-by-min(m,n) lower trapezoidal matrix L (L is
lower triangular if m <= n); the elements above the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors.
Higher performance is achieved if A is in pinned memory, e.g.
allocated using cudaMallocHost.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors.

WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = O, WORK(1) returns the optimal LWORK.
Higher performance is achieved if WORK is in pinned memory, e.g.
allocated using cudaMallocHost.

LWORK  (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is the optimal
blocksize. If LWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message is issued.

DA (workspace) REAL array on the GPU, dimension M*(N + NB),
where NB can be obtained through magma_get_sgeqrf_nb(M).
(size to be reduced in upcoming versioms).

INFO (output) INTEGER
= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

The matrix Q is represented as a product of elementary reflectors

Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v’

where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
and tau in TAU(i).
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1.1.6 Function magma sgetrf gpu

int magma_sgetrf_gpu(int *m, int *n, float *a, int *lda,
int *ipiv, float *work, int *info)

SGETRF computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges.

The factorization has the form

A=P*xLx*xT
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) REAL array on the GPU, dimension (LDA,N) where
LDA >= max(M, N)+k1 , k1<32 such that (max(M, N)+k1)%32==0.
The memory pointed by A should be at least
(max(M, N) + k1)°2 + (M + k2)*NB + 2*NB"2
where k2 < 32 such that (M + k2) %32 ==

On entry, the M-by-N matrix to be factored.

On exit, the factors L and U from the factorization

A = P+L*U; the unit diagonal elements of L are not stored.
The rest of A is considered work space and is changed.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).

WORK (workspace/output) REAL array, dimension >= Nx*NB,
where NB can be obtained through magma_get_sgetrf_nb(M).
Higher performance is achieved if WORK is in pinned memory,
e.g. allocated using cudaMallocHost.

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equatioms.
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1.1.7 Function magma sgeqrf _gpu

int magma_sgeqrf_gpu(int *m, int *n, float *a, int *1lda, float *tau,
float *work, int *1lwork, float *dwork, int *info )

SGEQRF computes a QR factorization of a real M-by-N matrix A: A = Q * R.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) REAL array on the GPU, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(M,N)-by-N upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of min(m,n) elementary reflectors.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).

WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = O, WORK(1) returns the optimal LWORK.
Higher performance is achieved if WORK is in pinned memory,
e.g. allocated using cudaMallocHost.

LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= (M+N)*NB,
where NB can be obtained through magma_get_sgeqrf_nb(M).

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued.

DWORK  (workspace) REAL array on the GPU, dimension N*NB,
where NB can be obtained through magma_get_sgeqrf_nb(M).

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v’
where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and
v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).



1.1.8 Function magma spotrf gpu

int magma_spotrf_gpu(char *uplo, int *n, float *a, int *lda,
float *work, int *info)

SPOTRF computes the Cholesky factorization of a real symmetric
positive definite matrix A.

The factorization has the form
A = UxxT * U, if UPLO = ’U’, or
A =L =x L*xT, if UPLO = ’L’,
where U is an upper triangular matrix and L is lower triangular.

This is the block version of the algorithm, calling Level 3 BLAS.

UPLO (input) CHARACTER#*1
= ’U’: Upper triangle of A is stored;
= ’L’: Lower triangle of A is stored.

N (input) INTEGER
The order of the matrix A. N >= 0.

A (input/output) REAL array on the GPU, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = ’U’, the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = ’L’, the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.

On exit, if INFO = O, the factor U or L from the Cholesky
factorization A = Ux*xTxU or A = L*L**T.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

WORK (workspace) REAL array, dimension at least (nb, nb)
where nb can be obtained through magma_get_spotrf_nb(*n)
Work array allocated with cudaMallocHost.

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.



16

1.1.9 Function magma dgetrf

int magma_dgetrf(int *m, int *n, double *a, int *1lda,
int *ipiv, double *work, double *da, int *info)

DGETRF computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges.

The factorization has the form

A=P*xLx*xT
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) DOUBLE array, dimension (LDA,N)
On entry, the M-by-N matrix to be factored.
On exit, the factors L and U from the factorization
A = P+L*U; the unit diagonal elements of L are not stored.
Higher performance is achieved if A is in pinned memory,
e.g. allocated using cudaMallocHost.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).

WORK (workspace/output) DOUBLE array, dimension >= Nx*NB,
where NB can be obtained through magma_get_sgetrf_nb(M).
Higher performance is achieved if WORK is in pinned memory,
e.g. allocated using cudaMallocHost.

DA (workspace) DOUBLE array on the GPU, dimension
(max(M, N)+ k1)°2 + (M + k2)*NB + 2%NB"2,
where NB can be obtained through magma_get_sgetrf_nb(M).
k1l < 32 and k2 < 32 are such that
(max (M, N) + k1)%32==0 and (M+k2)%32==0.

INFO (output) INTEGER

= 0: successful exit
if INFO = -i, the i-th argument had an illegal value
if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equatioms.

< 0:
> 0:



1.1.10 Function magma _dgeqrf

int magma_dgeqrf(int *m, int *n, double *a, int x*1lda, double *tau,
double *work, int *lwork, double *da, int *info )

DGEQRF computes a QR factorization of a real M-by-N matrix A: A = Q * R.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) DOUBLE array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(M,N)-by-N upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of min(m,n) elementary reflectors.
Higher performance is achieved if A is in pinned memory,
e.g. allocated using cudaMallocHost.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

TAU (output) DOUBLE array, dimension (min(M,N))
The scalar factors of the elementary reflectors.

WORK (workspace/output) DOUBLE array, dimension (MAX(1,LWORK))
On exit, if INFO = O, WORK(1) returns the optimal LWORK.
Higher performance is achieved if WORK is in pinned memory,
e.g. allocated using cudaMallocHost.

LWORK  (input) INTEGER
The dimension of the array WORK. LWORK >= N*NB,
where NB can be obtained through magma_get_dgeqrf_nb(M).

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued.

DA (workspace) DOUBLE array on the GPU, dimension N*(M + NB),
where NB can be obtained through magma_get_dgeqrf_nb(M).
(size to be reduced in upcoming versions).

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v’
where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and
v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).
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1.1.11 Function magma_dpotrf

int magma_dpotrf(char *uplo, int *n, double *a, int *1lda, double *work,
int *info)

DPOTRF computes the Cholesky factorization of a real symmetric
positive definite matrix A.

The factorization has the form
A = UxxT * U, if UPLO = ’U’, or
A =L = L*xT, if UPLO = ’L’,
where U is an upper triangular matrix and L is lower triangular.

This is the block version of the algorithm, calling Level 3 BLAS.

UPLO (input) CHARACTER#*1
= ’U’: Upper triangle of A is stored;
= ’L’: Lower triangle of A is stored.

N (input) INTEGER
The order of the matrix A. N >= 0.

A (input/output) DOUBLE array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = ’U’, the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = ’L’, the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.

On exit, if INFO = O, the factor U or L from the Cholesky
factorization A = U*xT*U or A = L*Lx**T.

Higher performance is achieved if A is in pinned memory,
e.g. allocated using cudaMallocHost.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

WORK (workspace) DOUBLE array on the GPU, dimension (N, N)
(size to be reduced in upcoming versions).

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not positive
definite, and the factorization could not be completed.



1.1.12 Function magma_dgeqlf

int magma_dgeqlf (int *m, int *n, double *a, int *1da,
double *tau, double *work, int *1lwork, double *da, int *info)

DGEQLF computes a QL factorization of a real M-by-N matrix A: A =Q * L.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) DOUBLE REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, if m >= n, the lower triangle of the subarray
A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
if m <= n, the elements on and below the (n-m)-th superdiagonal
contain the M-by-N lower trapezoidal matrix L; the remaining
elements, with the array TAU, represent the orthogonal matrix Q
as a product of elementary reflectors.
Higher performance is achieved if A is in pinned memory,
e.g. allocated using cudaMallocHost.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

TAU (output) DOUBLE REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors.

WORK (workspace/output) DOUBLE REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = O, WORK(1) returns the optimal LWORK.
Higher performance is achieved if WORK is in pinned memory, e.g.
allocated using cudaMallocHost.

LWORK  (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize. If LWORK = -1, then a workspace query is
assumed; the routine only calculates the optimal size of the WORK
array, returns this value as the first entry of the WORK array,
and no error message related to LWORK is issued.

DA (workspace) DOUBLE REAL array on the GPU, dimension N*(M + NB),
where NB can be obtained through magma_get_dgeqlf_nb(M).
(size to be reduced in upcoming versions).

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v’
where tau is a real scalar, and v is a real vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
A(1:m-k+i-1,n-k+i), and tau in TAU(i).
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1.1.13 Function magma_dgelqf

int magma_dgelqf (int *m, int #*n, double *a, int *lda, double *tau,
double *work, int *lwork, double *da, int *info)

DGELQF computes an LQ factorization of a real M-by-N matrix A: A =1L * Q.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) DOUBLE REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and below the diagonal of the array
contain the m-by-min(m,n) lower trapezoidal matrix L (L is
lower triangular if m <= n); the elements above the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors.
Higher performance is achieved if A is in pinned memory, e.g.
allocated using cudaMallocHost.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

TAU (output) DOUBLE REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors.

WORK (workspace/output) DOUBLE REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = O, WORK(1) returns the optimal LWORK.
Higher performance is achieved if WORK is in pinned memory, e.g.
allocated using cudaMallocHost.

LWORK  (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is the optimal
blocksize. If LWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message is issued.

DA (workspace) DOUBLE REAL array on the GPU, dimension M*(N + NB),
where NB can be obtained through magma_get_dgeqrf_nb(M).
(size to be reduced in upcoming versioms).

INFO (output) INTEGER
= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

The matrix Q is represented as a product of elementary reflectors

Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v’

where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
and tau in TAU(i).



1.1.14 Function magma_dgetrf_gpu

int magma_dgetrf_gpu(int *m, int *n, double *a, int *1da,
int *ipiv, double *work, int *info)

DGETRF computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges.

The factorization has the form

A=P*xLx*xT
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) DOUBLE array on the GPU, dimension (LDA,N) where
LDA >= max(M, N)+k1 , k1<32 such that (max(M, N)+k1)%32==0.
The memory pointed by A should be at least
(max(M, N) + k1)°2 + (M + k2)*NB + 2*NB"2
where k2 < 32 such that (M + k2) %32 ==

On entry, the M-by-N matrix to be factored.

On exit, the factors L and U from the factorization

A = P+L*U; the unit diagonal elements of L are not stored.
The rest of A is considered work space and is changed.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).

WORK (workspace/output) DOUBLE array, dimension >= N*NB,
where NB can be obtained through magma_get_dgetrf_nb(M).
Higher performance is achieved if WORK is in pinned memory,
e.g. allocated using cudaMallocHost.

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equatioms.
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1.1.15 Function magma _dgeqrf _gpu

int magma_dgeqrf_gpu(int *m, int *n, double *a, int #*lda, double *tau,
double *work, int *lwork, double *dwork, int *info )

DGEQRF computes a QR factorization of a real M-by-N matrix A: A = Q * R.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) DOUBLE array on the GPU, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(M,N)-by-N upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of min(m,n) elementary reflectors.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

TAU (output) DOUBLE array, dimension (min(M,N))
The scalar factors of the elementary reflectors.

WORK (workspace/output) DOUBLE array, dimension (MAX(1,LWORK))
On exit, if INFO = O, WORK(1) returns the optimal LWORK.
Higher performance is achieved if WORK is in pinned memory,
e.g. allocated using cudaMallocHost.

LWORK  (input) INTEGER
The dimension of the array WORK. LWORK >= (M+N)*NB,
where NB can be obtained through magma_get_dgeqrf_nb(M).

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued.

DWORK  (workspace) DOUBLE array on the GPU, dimension N*NB,
where NB can be obtained through magma_get_dgeqrf_nb(M).

INFO (output) INTEGER
= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v’

where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and
v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).



1.1.16 Function magma dpotrf _gpu

int magma_dpotrf_gpu(char *uplo, int *n, double *a, int *1lda, double *work,
int *info)

DPOTRF computes the Cholesky factorization of a real symmetric
positive definite matrix A.

The factorization has the form
A = UxxT * U, if UPLO = ’U’, or
A =L =x L*xT, if UPLO = ’L’,
where U is an upper triangular matrix and L is lower triangular.

This is the block version of the algorithm, calling Level 3 BLAS.

UPLO (input) CHARACTER#*1
= ’U’: Upper triangle of A is stored;
= ’L’: Lower triangle of A is stored.

N (input) INTEGER
The order of the matrix A. N >= 0.

A (input/output) DOUBLE array on the GPU, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = ’U’, the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = ’L’, the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.

On exit, if INFO = O, the factor U or L from the Cholesky
factorization A = Ux*xTxU or A = L*L**T.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

WORK (workspace) DOUBLE array, dimension at least (nb, nb)
where nb can be obtained through magma_get_dpotrf_nb(*n)
Work array allocated with cudaMallocHost.

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not positive
definite, and the factorization could not be completed.
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1.1.17 Function magma cgetrf

int magma_cgetrf(int *m, int #*n, float2 *a, int *1lda,
int *ipiv, float2 *work, float2 *da, int *info)

CGETRF computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges.

The factorization has the form

A=P*xLx*xT
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) COMPLEX array, dimension (LDA,N)
On entry, the M-by-N matrix to be factored.
On exit, the factors L and U from the factorization
A = P+L*U; the unit diagonal elements of L are not stored.
Higher performance is achieved if A is in pinned memory,
e.g. allocated using cudaMallocHost.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).

WORK (workspace/output) COMPLEX array, dimension >= N*NB,
where NB can be obtained through magma_get_cgetrf_nb(M).
Higher performance is achieved if WORK is in pinned memory,
e.g. allocated using cudaMallocHost.

DA (workspace) COMPLEX array on the GPU, dimension
(max(M, N)+ k1)°2 + (M + k2)*NB + 2%NB"2,
where NB can be obtained through magma_get_cgetrf_nb(M).
k1l < 32 and k2 < 32 are such that
(max (M, N) + k1)%32==0 and (M+k2)%32==0.

INFO (output) INTEGER

= 0: successful exit
if INFO = -i, the i-th argument had an illegal value
if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equatioms.

< 0:
> 0:
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1.1.18 Function magma cgeqrf

int magma_cgeqrf(int *m, int #*n, float2 *a, int x*1lda, float2 *tau,
float2 *work, int *lwork, float2 *da, int *info )

CGEQRF computes a QR factorization of a complex M-by-N matrix A: A = Q * R.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) COMPLEX array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(M,N)-by-N upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of min(m,n) elementary reflectors.
Higher performance is achieved if A is in pinned memory,
e.g. allocated using cudaMallocHost.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

TAU (output) COMPLEX array, dimension (min(M,N))
The scalar factors of the elementary reflectors.

WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
Higher performance is achieved if WORK is in pinned memory,
e.g. allocated using cudaMallocHost.

LWORK  (input) INTEGER
The dimension of the array WORK. LWORK >= N*NB,
where NB can be obtained through magma_get_cgeqrf_nb(M).

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued.

DA (workspace) COMPLEX array on the GPU, dimension N*(M + NB),
where NB can be obtained through magma_get_cgeqrf_nb(M).
(size to be reduced in upcoming versions).

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(1) =1 - tau * v * v’
where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and
v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).
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1.1.19 Function magma cpotrf

int magma_cpotrf(char *uplo, int *n, float2 *a, int *1lda, float2 *work,
int *info)

CPOTRF computes the Cholesky factorization of a complex Hermitian
positive definite matrix A.

The factorization has the form
A = UxxT * U, if UPLO = ’U’, or
A =L = L*xT, if UPLO = ’L’,
where U is an upper triangular matrix and L is lower triangular.

This is the block version of the algorithm, calling Level 3 BLAS.

UPLO (input) CHARACTER#*1
= ’U’: Upper triangle of A is stored;
= ’L’: Lower triangle of A is stored.

N (input) INTEGER
The order of the matrix A. N >= 0.

A (input/output) COMPLEX array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = ’U’, the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = ’L’, the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.

On exit, if INFO = O, the factor U or L from the Cholesky
factorization A = U*xT*U or A = L*Lx**T.

Higher performance is achieved if A is in pinned memory,
e.g. allocated using cudaMallocHost.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

WORK (workspace) COMPLEX array on the GPU, dimension (N, N)
(size to be reduced in upcoming versions).

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.



1.1.20 Function magma cgetrf gpu

int magma_cgetrf_gpu(int *m, int *n, float2 *a, int *1lda,
int *ipiv, float2 *work, int *info)

CGETRF computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges.

The factorization has the form

A=P*Lx*xT
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) COMPLEX array on the GPU, dimension (LDA,N) where
LDA >= max(M, N)+k1 , k1<32 such that (max(M, N)+k1)%32==0.
The memory pointed by A should be at least
(max(M, N) + k1)°2 + (M + k2)*NB + 2*NB"2
where k2 < 32 such that (M + k2) %32 ==

On entry, the M-by-N matrix to be factored.

On exit, the factors L and U from the factorization

A = P+L*U; the unit diagonal elements of L are not stored.
The rest of A is considered work space and is changed.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).

WORK (workspace/output) COMPLEX array, dimension >= Nx*NB,
where NB can be obtained through magma_get_cgetrf_nb(M).
Higher performance is achieved if WORK is in pinned memory,
e.g. allocated using cudaMallocHost.

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equatioms.
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1.1.21 Function magma_cgeqrf_gpu

int magma_cgeqrf_gpu(int *m, int *n, float2 *a, int #*lda, float2 =*tau,
float2 *work, int *lwork, float2 *dwork, int *info )

CGEQRF computes a QR factorization of a complex M-by-N matrix A: A = Q * R.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) COMPLEX array on the GPU, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(M,N)-by-N upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of min(m,n) elementary reflectors.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

TAU (output) COMPLEX array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).

WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = O, WORK(1) returns the optimal LWORK.
Higher performance is achieved if WORK is in pinned memory,
e.g. allocated using cudaMallocHost.

LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= (M+N)*NB,
where NB can be obtained through magma_get_cgeqrf_nb(M).

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued.

DWORK (workspace) COMPLEX array on the GPU, dimension N*NB,
where NB can be obtained through magma_get_cgeqrf_nb(M).

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(1) =1 - tau * v * v’
where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and
v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).



1.1.22 Function magma_cpotrf_gpu

int magma_cpotrf_gpu(char *uplo, int *n, float2 *a, int *lda,
float2 *work, int *info)

CPOTRF computes the Cholesky factorization of a complex Hermitian
positive definite matrix A.

The factorization has the form
A = UxxT * U, if UPLO = ’U’, or
A =L =x L*xT, if UPLO = ’L’,
where U is an upper triangular matrix and L is lower triangular.

This is the block version of the algorithm, calling Level 3 BLAS.

UPLO (input) CHARACTER#*1
= ’U’: Upper triangle of A is stored;
= ’L’: Lower triangle of A is stored.

N (input) INTEGER
The order of the matrix A. N >= 0.

A (input/output) COMPLEX array on the GPU, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = ’U’, the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = ’L’, the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.

On exit, if INFO = O, the factor U or L from the Cholesky
factorization A = Ux*xTxU or A = L*L**T.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

WORK (workspace) COMPLEX array, dimension at least (nb, nb)
where nb can be obtained through magma_get_cpotrf_nb(*n)
Work array allocated with cudaMallocHost.

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.
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1.1.23 Function magma zgetrf

int magma_zgetrf(int *m, int *n, double2 *a, int *lda,
int *ipiv, double2 *work, double2 *da, int *info)

ZGETRF computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges.

The factorization has the form

A=P*xLx*xT
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) DOUBLE COMPLEX array, dimension (LDA,N)
On entry, the M-by-N matrix to be factored.
On exit, the factors L and U from the factorization
A = P+L*U; the unit diagonal elements of L are not stored.
Higher performance is achieved if A is in pinned memory,
e.g. allocated using cudaMallocHost.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).

WORK (workspace/output) DOUBLE COMPLEX array, dimension >= N*NB,
where NB can be obtained through magma_get_cgetrf_nb(M).
Higher performance is achieved if WORK is in pinned memory,
e.g. allocated using cudaMallocHost.

DA (workspace) DOUBLE COMPLEX array on the GPU, dimension
(max(M, N)+ k1)°2 + (M + k2)*NB + 2%NB"2,
where NB can be obtained through magma_get_cgetrf_nb(M).
k1l < 32 and k2 < 32 are such that
(max (M, N) + k1)%32==0 and (M+k2)%32==0.

INFO (output) INTEGER

= 0: successful exit
if INFO = -i, the i-th argument had an illegal value
if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equatioms.

< 0:
> 0:
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1.1.24 Function magma_zgeqrf

int magma_zgeqrf (int *m, int #*n, double2 *a, int #*lda, double2 *tau,
double2 *work, int *1lwork, double2 *da, int *info )

ZGEQRF computes a QR factorization of a complex M-by-N matrix A: A = Q * R.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) DOUBLE COMPLEX array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(M,N)-by-N upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of min(m,n) elementary reflectors.
Higher performance is achieved if A is in pinned memory,
e.g. allocated using cudaMallocHost.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

TAU (output) DOUBLE COMPLEX array, dimension (min(M,N))
The scalar factors of the elementary reflectors.

WORK (workspace/output) DOUBLE COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = O, WORK(1) returns the optimal LWORK.

Higher performance is achieved if WORK is in pinned memory,
e.g. allocated using cudaMallocHost.

LWORK  (input) INTEGER
The dimension of the array WORK. LWORK >= N*NB,
where NB can be obtained through magma_get_zgeqrf_nb(M).

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued.

DA (workspace) DOUBLE COMPLEX array on the GPU, dimension N*(M + NB),
where NB can be obtained through magma_get_zgeqrf_nb(M).
(size to be reduced in upcoming versions).

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(1) =1 - tau * v * v’
where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and
v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).



32

1.1.25 Function magma zpotrf

int magma_zpotrf(char *uplo, int *n, double2 *a, int *lda, double2 *work,
int *info)

ZPOTRF computes the Cholesky factorization of a complex Hermitian
positive definite matrix A.

The factorization has the form
A = UxxT * U, if UPLO = ’U’, or
A =L = L*xT, if UPLO = ’L’,
where U is an upper triangular matrix and L is lower triangular.

This is the block version of the algorithm, calling Level 3 BLAS.

UPLO (input) CHARACTER#*1
= ’U’: Upper triangle of A is stored;
= ’L’: Lower triangle of A is stored.

N (input) INTEGER
The order of the matrix A. N >= 0.

A (input/output) DOUBLE COMPLEX array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = ’U’, the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = ’L’, the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.

On exit, if INFO = O, the factor U or L from the Cholesky
factorization A = U*xT*U or A = L*Lx**T.

Higher performance is achieved if A is in pinned memory,
e.g. allocated using cudaMallocHost.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

WORK (workspace) DOUBLE COMPLEX array on the GPU, dimension (N, N)
(size to be reduced in upcoming versions).

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not positive
definite, and the factorization could not be completed.
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1.1.26 Function magma zgetrf gpu

int magma_zgetrf_gpu(int *m, int *n, double2 *a, int *1lda,
int *ipiv, double2 *work, int *info)

ZGETRF computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges.

The factorization has the form

A=P*Lx*xT
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) DOUBLE COMPLEX array on the GPU, dimension (LDA,N) where
LDA >= max(M, N)+k1 , k1<32 such that (max(M, N)+k1)%32==0.
The memory pointed by A should be at least
(max(M, N) + k1)°2 + (M + k2)*NB + 2*NB"2
where k2 < 32 such that (M + k2) %32 ==

On entry, the M-by-N matrix to be factored.

On exit, the factors L and U from the factorization

A = P+L*U; the unit diagonal elements of L are not stored.
The rest of A is considered work space and is changed.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).

WORK (workspace/output) DOUBLE COMPLEX array, dimension >= Nx*NB,
where NB can be obtained through magma_get_zgetrf_nb(M).
Higher performance is achieved if WORK is in pinned memory,
e.g. allocated using cudaMallocHost.

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equatioms.
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1.1.27 Function magma zgeqrf gpu

int magma_zgeqrf_gpu(int *m, int *n, double2 *a, int *lda, double2 x*tau,
double2 *work, int *lwork, double2 *dwork, int *info )

ZGEQRF computes a QR factorization of a complex M-by-N matrix A: A = Q * R.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. N >= 0.

A (input/output) DOUBLE COMPLEX array on the GPU, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(M,N)-by-N upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of min(m,n) elementary reflectors.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

TAU (output) DOUBLE COMPLEX array, dimension (min(M,N))
The scalar factors of the elementary reflectors.

WORK (workspace/output) DOUBLE COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = O, WORK(1) returns the optimal LWORK.
Higher performance is achieved if WORK is in pinned memory,
e.g. allocated using cudaMallocHost.

LWORK  (input) INTEGER
The dimension of the array WORK. LWORK >= (M+N)*NB,
where NB can be obtained through magma_get_zgeqrf_nb(M).

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued.

DWORK  (workspace) DOUBLE COMPLEX array on the GPU, dimension N*NB,
where NB can be obtained through magma_get_zgeqrf_nb(M).

INFO (output) INTEGER
= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v’

where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and
v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).



1.1.28 Function magma zpotrf gpu

int magma_zp

ZPOTRF c
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The fact
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where U
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INFO

otrf_gpu(char *uplo, int *n, double2 *a, int *1lda, double2 *work,
int *info)

omputes the Cholesky factorization of a complex Hermitian
definite matrix A.

orization has the form
*xT * U, if UPLO = ’U’, or
* L*xT, if UPLO = °L’,
is an upper triangular matrix and L is lower triangular.

the block version of the algorithm, calling Level 3 BLAS.

(input) CHARACTER#*1
= ’U’: Upper triangle of A is stored;
= ’L’: Lower triangle of A is stored.

(input) INTEGER
The order of the matrix A. N >= 0.

(input/output) DOUBLE COMPLEX array on the GPU, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = ’U’, the leading
N-by-N upper triangular part of A contains the upper

triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = ’L’, the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.

On exit, if INFO = O, the factor U or L from the Cholesky
factorization A = Ux*xTxU or A = L*L**T.

(input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

(workspace) DOUBLE COMPLEX array, dimension at least (unb, nb)
where nb can be obtained through magma_get_zpotrf_nb(*n)
Work array allocated with cudaMallocHost.

(output) INTEGER

= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

> 0: if INFO = i, the leading minor of order i is not positive
definite, and the factorization could not be completed.
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1.2 Linear solvers

Provided are solvers in real arithmetic, both single and double precision, based
on the LU, QR, and Cholesky factorizations. To solve

Ax =1»

the matrix A is first factored, and second, the resulting factors are used in solving
the original problem. A general recommendation is to use LU for general n x n
matrices, Cholesky for symmetric and positive definite n x n matrices, and QR
for solving least squares problems

min ||Az — b||
for general m x n, m > n matrices.

The solvers are provided in the more critical GPU interface. Indeed, if a user
has used the CPU interface for the matrix factorization, it would be often faster
to do the solving step directly on the CPU using LAPACK with optimized CPU
BLAS — the solving step is a bandwidth limited (Level 2 BLAS) operation and
currently CPU’s bus is of higher bandwidth than the bandwidth of the CPU-
GPU connection (i.e. the time to solve on the CPU would be faster than just
transferring the entire matrix to the GPU).

Although the solution step has O(n)x less floating point operations than the
factorization, it is still very important to optimize it. Solving a triangular system
of equations can be very slow because the computation is bandwidth limited and
naturally not parallel. Various approaches have been proposed in the past. We
use an approach where diagonal blocks of A are explicitly inverted and used
in a block algorithm. This results in a numerically stable algorithm, especially
when used with triangular matrices coming from numerically stable factorization
algorithms (e.g. as in LAPACK and as implemented here in MAGMA), of high
performance, e.g. often exceeding 100x the performance of the corresponding
CUBLAS implementations.

To take advantage of the fact that GPU’s single precision is currently of much
higher performance than the double precision (theoretically ~ 10x), MAGMA
version 0.2 provides a second set of solvers, based on the mixed precision iterative
refinement technique. The solvers are based again on correspondingly the LU,
QR, and Cholesky factorizations, and are designed to solve linear problems in
double precision accuracy but at a speed that is characteristic for the much faster
single precision computations. The idea is to use single precision for the bulk of
the computation, namely the factorization step, and than use that factorization
as a preconditioner in a simple iterative refinement process in double precision
arithmetic. This often results in the desired high performance and high accuracy
solvers.
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1.2.1 Function magma_sgetrs_gpu

int magma_sgetrs_gpu(char *trans , int n, int nrhs, float *a , int 1lda,
int *ipiv, float *b, int 1ldb, int *info, float *hwork)

Solves a system of linear equations
A*xX=B or A *xX =B
with a general N-by-N matrix A using the LU factorization computed by SGETRF_GPU.

TRANS  (input) CHARACTER*1
Specifies the form of the system of equationms:
=’N’: A * X =B (No transpose)
=’T’: A’* X =B (Transpose)
= ’C’: A’ X =B (Conjugate transpose = Transpose)

N (input) INTEGER
The order of the matrix A. N >= 0.

NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

A (input) REAL array on the GPU, dimension (LDA,N)
The factors L and U from the factorization A = P*L*U as computed
by SGETRF_GPU.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV (input) INTEGER array, dimension (N)
The pivot indices from SGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).

B (input/output) REAL array on the GPU, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.

LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO (output) INTEGER
= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

HWORK  (workspace) REAL array, dimension N*NRHS
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1.2.2 Function magma_sgeqrs_gpu

int magma_sgeqrs_gpu(int *m, int *n, int *nrhs,
float *a, int *lda, float *tau, float *c, int *1ldc,
float *work, int *lwork, float *td, int *info)

Solves the least squares problem
min || A*X - C ||
using the QR factorization A = Q*R computed by SGEQRF_GPU2.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. M >= N >= 0.

NRHS (input) INTEGER
The number of columns of the matrix C. NRHS >= 0.

A (input) REAL array on the GPU, dimension (LDA,N)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,n, as returned by

SGEQRF_GPU2 in the first n columns of its array argument A.

LDA (input) INTEGER
The leading dimension of the array A, LDA >= M.

TAU (input) REAL array, dimension (N)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by MAGMA_SGEQRF_GPU2.

C (input/output) REAL array on the GPU, dimension (LDC,NRHS)
On entry, the M-by-NRHS matrix C.
On exit, the N-by-NRHS solution matrix X.

LDC (input) INTEGER
The leading dimension of the array C. LDC >= M.

WORK (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = O, WORK(1) returns the optimal LWORK.

LWORK  (input) INTEGER
The dimension of the array WORK, LWORK >= max(1,NRHS).
For optimum performance LWORK >= (M-N+NB+2#NRHS)*NB, where NB is
the blocksize given by magma_get_sgeqrf _nb( M ).

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array.

TD (input) REAL array that is the output (the 9th argument)
of magma_sgeqrf_gpu2.

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
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1.2.3 Function magma spotrs_gpu

int magma_spotrs_gpu(char *UPLO, int N , int NRHS, float *A , int LDA,
float *B, int LDB, int *INFO)

Solves a system of linear equations A*X = B with a symmetric
positive definite matrix A using the Cholesky factorization
A = UxxT*U or A = L*L**T computed by SPOTRF_GPU.

UPLO (input) CHARACTER*1
= ’U’: Upper triangle of A is stored;
= ’L’: Lower triangle of A is stored.

N (input) INTEGER
The order of the matrix A. N >= 0.

NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

A (input) REAL array on the GPU, dimension (LDA,N)
The triangular factor U or L from the Cholesky factorization
A = UxxT*U or A = L*L*xT, as computed by SPOTRF.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

B (input/output) REAL array on the GPU, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.

LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
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1.2.4 Function magma_dgetrs_gpu

int magma_dgetrs_gpu(char *trans , int n, int nrhs, double *a , int lda,
int *ipiv, double *b, int 1ldb, int *info, double *hwork)

Solves a system of linear equations
A*xX=B or A *xX =B
with a general N-by-N matrix A using the LU factorization computed by SGETRF_GPU.

TRANS  (input) CHARACTER*1
Specifies the form of the system of equationms:
=’N’: A * X =B (No transpose)
=’T’: A’ X =B (Transpose)
= ’C’: A’ X =B (Conjugate transpose = Transpose)

N (input) INTEGER
The order of the matrix A. N >= 0.

NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

A (input) DOUBLE array on the GPU, dimension (LDA,N)
The factors L and U from the factorization A = P*L*U as computed
by SGETRF_GPU.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV (input) INTEGER array, dimension (N)
The pivot indices from SGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).

B (input/output) DOUBLE array on the GPU, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.

LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO (output) INTEGER
= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

HWORK  (workspace) DOUBLE array, dimension N*NRHS



1.2.5 Function magma dgeqrs_gpu

int magma_dgeqrs_gpu(int *m, int *n, int *nrhs,
double *a, int *1da, double *tau, double *c, int *1ldc,
double *work, int *lwork, double *td, int *info)

Solves the least squares problem
min || A*X - C ||
using the QR factorization A = Q*R computed by SGEQRF_GPU2.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. M >= N >= 0.

NRHS (input) INTEGER
The number of columns of the matrix C. NRHS >= 0.

A (input) DOUBLE array on the GPU, dimension (LDA,N)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,n, as returned by
SGEQRF_GPU2 in the first n columns of its array argument A.

LDA (input) INTEGER
The leading dimension of the array A, LDA >= M.

TAU (input) DOUBLE array, dimension (N)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by MAGMA_DGEQRF_GPU2.

C (input/output) DOUBLE array on the GPU, dimension (LDC,NRHS)
On entry, the M-by-NRHS matrix C.
On exit, the N-by-NRHS solution matrix X.

LDC (input) INTEGER
The leading dimension of the array C. LDC >= M.

WORK (workspace/output) DOUBLE array, dimension (LWORK)
On exit, if INFO = O, WORK(1) returns the optimal LWORK.

LWORK  (input) INTEGER
The dimension of the array WORK, LWORK >= max(1,NRHS).
For optimum performance LWORK >= (M-N+NB+2#NRHS)*NB, where NB is
the blocksize given by magma_get_sgeqrf _nb( M ).

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array.

TD (input) DOUBLE array that is the output (the 9th argument)
of magma_dgeqrf_gpu2.

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
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1.2.6 Function magma dpotrs_gpu

int magma_dpotrs_gpu(char *UPLO, int N , int NRHS, double *A , int LDA,
double *B, int LDB, int *INFO)

Solves a system of linear equations A*X = B with a symmetric
positive definite matrix A using the Cholesky factorization
A = UxxT*U or A = L*L**T computed by SPOTRF_GPU.

UPLO (input) CHARACTER*1
= ’U’: Upper triangle of A is stored;
= ’L’: Lower triangle of A is stored.

N (input) INTEGER
The order of the matrix A. N >= 0.

NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

A (input) DOUBLE array on the GPU, dimension (LDA,N)
The triangular factor U or L from the Cholesky factorization
A = UxxT*U or A = L*L*xT, as computed by SPOTRF.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

B (input/output) DOUBLE array on the GPU, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.

LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value



1.2.7 Function magma dsgesv_gpu

int magma_dsgesv_gpu(int N, int NRHS, double *A, int LDA, int *IPIV, double *B,
int LDB, double *X, int LDX, double *WORK, float *SWORK,
int *ITER, int *INFO, float *H_SWORK, double *H_WORK,
int *DIPIV)

Computes the solution to a real system of linear equations
A * X =B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices.

DSGESV first attempts to factorize the matrix in SINGLE PRECISION
and use this factorization within an iterative refinement procedure
to produce a solution with DOUBLE PRECISION normwise backward error
quality (see below). If the approach fails the method switches to a
DOUBLE PRECISION factorization and solve.

The iterative refinement is not going to be a winning strategy if
the ratio SINGLE PRECISION performance over DOUBLE PRECISION
performance is too small. A reasonable strategy should take the
number of right-hand sides and the size of the matrix into account.
This might be done with a call to ILAENV in the future. Up to now, we
always try iterative refinement.
The iterative refinement process is stopped if

ITER > ITERMAX
or for all the RHS we have:

RNRM < SQRT (N)*XNRM+ANRM*EPS*BWDMAX
where

o ITER is the number of the current iteration in the iterative

refinement process

o RNRM is the infinity-norm of the residual

o XNRM is the infinity-norm of the solution

o ANRM is the infinity-operator-norm of the matrix A

o EPS is the machine epsilon returned by DLAMCH(’Epsilon’)
The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively.

N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

A (input or input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N coefficient matrix A.
On exit, if iterative refinement has been successfully used
(INFO.EQ.O and ITER.GE.O, see description below), A is
unchanged. If double precision factorization has been used
(INFO.EQ.O and ITER.LT.O, see description below), then the
array A contains the factors L and U from the factorization
A = P+L*U; the unit diagonal elements of L are not stored.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation matrix P;
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row i of the matrix was interchanged with row IPIV(i).
Corresponds either to the single precision factorization
(if INFO.EQ.0 and ITER.GE.O) or the double precision
factorization (if INF0.EQ.O and ITER.LT.O).

B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.

LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).

X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = O, the N-by-NRHS solution matrix X.

LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).

WORK (workspace) DOUBLE PRECISION array, dimension (N*NRHS)
This array is used to hold the residual vectors.

SWORK  (workspace) REAL array, dimension (N*(N+NRHS))
This array is used to store the single precision matrix and the
right-hand sides or solutions in single precision.

ITER (output) INTEGER
< 0: iterative refinement has failed, double precision
factorization has been performed
-1 : the routine fell back to full precision for
implementation- or machine-specific reasons
-2 : narrowing the precision induced an overflow,
the routine fell back to full precision
-3 : failure of SGETRF
-31: stop the iterative refinement after the 30th
iterations
> 0: iterative refinement has been successfully used.
Returns the number of iterations

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) computed in DOUBLE PRECISION is
exactly zero. The factorization has been completed,
but the factor U is exactly singular, so the solution
could not be computed.

H_SWORK (workspace) REAL array, dimension at least (nb, nb)
where nb can be obtained through magma_get_sgetrf_nb(*n)
Work array allocated with cudaMallocHost.

H_WORK (workspace) DOUBLE array, dimension at least (nb, nb)
where nb can be obtained through magma_get_dgetrf_nb(*n)
Work array allocated with cudaMallocHost.

DIPIV  (output) INTEGER array on the GPU, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was moved to row IPIV(i).



45

1.2.8 Function magma dsgeqrsv_gpu

int magma_dsgeqrsv_gpu(int M, int N, int NRHS, double *A, int LDA, double *B,
int LDB, double *X,int LDX, double *WORK, float *SWORK,
int *ITER, int *INFO, float *tau, int lwork, float *h_work,
float *d_work, double *tau_d, int lwork_d, double *h_work_d,
double *d_work_d)

DSGEQRSV solves the least squares problem
min || AxX - B II,
where A is an M-by-N matrix and X and B are M-by-NRHS matrices.

DSGEQRSV first attempts to factorize the matrix in SINGLE PRECISION

and use this factorization within an iterative refinement procedure

to produce a solution with DOUBLE PRECISION norm-wise backward error
quality (see below). If the approach fails the method switches to a

DOUBLE PRECISION factorization and solve.

The iterative refinement is not going to be a winning strategy if
the ratio SINGLE PRECISION performance over DOUBLE PRECISION
performance is too small. A reasonable strategy should take the
number of right-hand sides and the size of the matrix into account.
This might be done with a call to ILAENV in the future. Up to now, we
always try iterative refinement.
The iterative refinement process is stopped if

ITER > ITERMAX
or for all the RHS we have:

RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
where

o ITER is the number of the current iteration in the iterative

refinement process

o RNRM is the infinity-norm of the residual

o XNRM is the infinity-norm of the solution

o ANRM is the infinity-operator-norm of the matrix A

o EPS is the machine epsilon returned by DLAMCH(’Epsilon’)
The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively.

M (input) INTEGER
The number of rows of the matrix A. M >= 0.

N (input) INTEGER
The number of columns of the matrix A. M >= N >= 0.

NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

A (input or input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N coefficient matrix A.
On exit, if iterative refinement has been successfully used
(INFO.EQ.O and ITER.GE.O, see description below), A is
unchanged. If double precision factorization has been used
(INFO.EQ.O and ITER.LT.O, see description below), then the
array A contains the QR factorization of A as returned by
function DGEQRF_GPU2.

LDA (input) INTEGER



The leading dimension of the array A. LDA >= max(1,M).

B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The M-by-NRHS right hand side matrix B.

LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,M).

X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0, the N-by-NRHS solution matrix X.

LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).

WORK (workspace) DOUBLE PRECISION array, dimension (N*NRHS)
This array is used to hold the residual vectors.

SWORK  (workspace) REAL array, dimension (M*(N+NRHS))
This array is used to store the single precision matrix and the
right-hand sides or solutions in single precision.

ITER (output) INTEGER
< 0: iterative refinement has failed, double precision
factorization has been performed
-1 : the routine fell back to full precision for
implementation- or machine-specific reasons
-2 : narrowing the precision induced an overflow,
the routine fell back to full precision
-3 : failure of SGETRF
-31: stop the iterative refinement after the 30th
iterations
> 0: iterative refinement has been successfully used.
Returns the number of iterations

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

TAU (output) REAL array, dimension (N)
On exit, TAU(i) contains the scalar factor of the elementary
reflector H(i), as returned by magma_sgeqrf_gpu2.

LWORK  (input) INTEGER
The dimension of the array H_WORK. LWORK >= (M+N+NB)*NB,
where NB can be obtained through magma_get_sgeqrf_nb(M).

H_WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
Higher performance is achieved if H_WORK is in pinned memory, e.g.
allocated using cudaMallocHost.

D_WORK (workspace/output) REAL array on the GPU, dimension 2*N*NB,
where NB can be obtained through magma_get_sgeqrf_nb(M).
It starts with NB*NB blocks that store the triangular T
matrices, followed by the NB*NB blocks of the diagonal
inverses for the R matrix.

TAU_D  (output) DOUBLE REAL array, dimension (N)



On exit, if the matrix had to be factored in double precision,
TAU(i) contains the scalar factor of the elementary
reflector H(i), as returned by magma_dgeqrf_gpu2.

LWORK_D (input) INTEGER
The dimension of the array H_WORK_D. LWORK_D >= (M+N+NB)*NB,
where NB can be obtained through magma_get_dgeqrf_nb(M).

H_WORK_D (workspace/output) DOUBLE REAL array, dimension (MAX(1,LWORK_D))
This memory is unattached if the iterative refinement worked,
otherwise it is used as workspace to factor the matrix in
double precision. Higher performance is achieved if H_WORK_D is
in pinned memory, e.g. allocated using cudaMallocHost.

D_WORK_D (workspace/output) DOUBLE REAL array on the GPU, dimension 2xN*NB,
where NB can be obtained through magma_get_dgeqrf_nb(M).
This memory is unattached if the iterative refinement worked,
otherwise it is used as workspace to factor the matrix in
double precision. It starts with NB*NB blocks that store the
triangular T matrices, followed by the NB*NB blocks of the
diagonal inverses for the R matrix.
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1.2.9 Function magma dsposv_gpu

int magma_dsposv_gpu(char UPLO, int N, int NRHS, double *A,int LDA, double *B,
int LDB, double *X, int LDX, double *WORK, float *SWORK,
int *ITER, int *INFO, float *H_SWORK, double *H_WORK)

DSPOSV computes the solution to a real system of linear equations

A *x X =B,
where A is an N-by-N symmetric positive definite matrix and X and B
are N-by-NRHS matrices.

DSPOSV first attempts to factorize the matrix in SINGLE PRECISION
and use this factorization within an iterative refinement procedure
to produce a solution with DOUBLE PRECISION norm-wise backward error
quality (see below). If the approach fails the method switches to a
DOUBLE PRECISION factorization and solve.

The iterative refinement is not going to be a winning strategy if

the ratio SINGLE PRECISION performance over DOUBLE PRECISION
performance is too small. A reasonable strategy should take the
number of right-hand sides and the size of the matrix into account.
This might be done with a call to ILAENV in the future. Up to now, we
always try iterative refinement.

The iterative refinement process is stopped if
ITER > ITERMAX
or for all the RHS we have:
RNRM < SQRT (N)*XNRM*ANRM*EPS*BWDMAX
where
o ITER is the number of the current iteration in the iterative
refinement process
o RNRM is the infinity-norm of the residual
o XNRM is the infinity-norm of the solution
o ANRM is the infinity-operator-norm of the matrix A
o EPS is the machine epsilon returned by DLAMCH(’Epsilon’)
The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively.

UPLO (input) CHARACTER
= ’U’: Upper triangle of A is stored;
= ’L’: Lower triangle of A is stored.

N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

A (input or input/output) DOUBLE PRECISION array,
dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = ’U’, the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = ’L’, the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.



On exit, if iterative refinement has been successfully used
(INFO.EQ.O and ITER.GE.O, see description below), then A is
unchanged, if double precision factorization has been used
(INFO.EQ.O and ITER.LT.O, see description below), then the
array A contains the factor U or L from the Cholesky
factorization A = U**TxU or A = L*L*xT.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.

LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).

X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = O, the N-by-NRHS solution matrix X.

LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).

WORK (workspace) DOUBLE PRECISION array, dimension (N*NRHS)
This array is used to hold the residual vectors.

SWORK  (workspace) REAL array, dimension (N*(N+NRHS))
This array is used to use the single precision matrix and the
right-hand sides or solutions in single precision.

ITER (output) INTEGER
< 0: iterative refinement has failed, double precision
factorization has been performed
-1 : the routine fell back to full precision for
implementation- or machine-specific reasons
-2 : narrowing the precision induced an overflow,
the routine fell back to full precision
-3 : failure of SPOTRF
-31: stop the iterative refinement after the 30th
iterations
> 0: iterative refinement has been successfully used.
Returns the number of iterations

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i of (DOUBLE
PRECISION) A is not positive definite, so the
factorization could not be completed, and the solution
has not been computed.

H_SWORK (workspace) REAL array, dimension at least (nb, nb)
where nb can be obtained through magma_get_spotrf_nb(*n)
Work array allocated with cudaMallocHost.

H_WORK (workspace) DOUBLE array, dimension at least (nb, nb)
where nb can be obtained through magma_get_dpotrf_nb(*n)
Work array allocated with cudaMallocHost.
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1.3 Two-sided matrix factorizations

As the one-sided matrix factorizations are the bases for various linear solvers,
the two-sided matrix factorizations are the bases for eigen-solvers, and there-
fore form an important class of dense linear algebra routines. The two-sided
factorizations have been traditionally more difficult to handle/accelerate on cur-
rent architectures. The reason is that the two-sided factorizations involve large
matrix-vector products which are memory bound, and as the gap between com-
pute and communication power increases exponentially, these memory bound
operations become an increasingly more difficult to handle bottleneck. GPUs
though offer an attractive possibility to accelerate them. Indeed, having a high
bandwidth (e.g. 10x larger than current CPU bus bandwidths), GPUs can
accelerate matrix-vector products significantly (10 to 30x). Having this impor-
tant component, it’s just a matter on how to organize the computation into a
hybrid fashion. An approach similar to the one for one-sided factorizations is
used (see Figure 1.2 for an illustration of the performance to be expected and
[6] for further detail).

55 b LSS ) ne  hound
s " Multicore + GPU

0 T'Hybrid (basic)

¥ Multicore
1 Core

GFlop/s

GPU : GeForce GTX 280
(240 Cores @ 1.30 GHz)

Multicore : Intel Xeon

L} (2x4 Cores @ 2.33 GHz)

1 2 3 4 5 6 7 8

Matrix size x 1,000

Figure 1.2: Performance (in double precision) for the hybrid reduction to upper
Hessenberg form

This release provides implementations for the reduction to upper Hessenberg
form in single and double precision real arithmetic. Various highly optimized
matrix-vector multiplications have been developed as needed for the other two-
sided factorizations. Combining these kernels with the hybrid approach from
the Hessenberg reduction, indicates the rest of the two-sided factorizations can
be similarly developed to yield large performance improvements (vs algorithms
for just homogeneous multicore architectures).
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1.3.1 Function magma sgehrd

int magma_sgehrd(int *n, int *ilo, int *ihi, float *a, int *lda,

float *tau, float *work, int *lwork, float *da, int *info)

DGEHRD reduces a real general matrix A to upper Hessenberg form H by
an orthogonal similarity transformation: Q’ * A *x Q =H .

ILO
IHI

LDA

TAU

WORK

LWORK

DA

INFO

(input) INTEGER
The order of the matrix A. N >= 0.

(input) INTEGER

(input) INTEGER

It is assumed that A is already upper triangular in rows
and columns 1:IL0O-1 and IHI+1:N. ILO and IHI are normally
set by a previous call to DGEBAL; otherwise they should be
set to 1 and N respectively. See Further Details.

1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=O0.

(input/output) SINGLE PRECISION array, dimension (LDA,N)

On entry, the N-by-N general matrix to be reduced.

On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
elements below the first subdiagonal, with the array TAU,
represent the orthogonal matrix Q as a product of elementary
reflectors. See Further Details.

(input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

(output) SINGLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details). Elements 1:IL0-1 and IHI:N-1 of TAU are set to zero.

(workspace/output) SINGLE PRECISION array, dimension (LWORK)
On exit, if INFO = O, WORK(1) returns the optimal LWORK.

(input) INTEGER

The length of the array WORK. LWORK >= max(1,N).

For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

(workspace) SINGLE array on the GPU, dimension
N*N + 2%N*NB + NB*NB,
where NB can be obtained through magma_get_sgehrd_nb(N).

(output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.

Further Details
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The matrix Q is represented as a product of (ihi-ilo) elementary
reflectors

Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Each H(i) has the form
H(i) = I - tau * v * v’
where tau is a real scalar, and v is a real vector with
v(1:i) = 0, v(i+1) =1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on

exit in A(i+2:ihi,i), and tau in TAU(i).

The contents of A are illustrated by the following example, with
n =7, ilo = 2 and ihi = 6:

on entry, on exit,

(a a a a a a a) (a a h h h h a)
( a a a a a a) ( a h h h h a)
( a a a a a a) ( h h h h h h)
( a a a a a a) ( v2 h h h h h)
( a a a a a a) ( v2 v3 h h h h)
( a a a a a a) ( v2 v3 v4 h h h)
( a ) ( a )

where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).

This implementation follows the algorithm and notations described in

S. Tomov and J. Dongarra, "Accelerating the reduction to upper Hessenberg
form through hybrid GPU-based computing," University of Tennessee Computer
Science Technical Report, UT-CS-09-642 (also LAPACK Working Note 219),

May 24, 2009.
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Function magma_dgehrd

int magma_dgehrd(int *n, int *ilo, int *ihi, double *a, int *1da,

double *tau, double *work, int *1lwork, double *da, int *info)

DGEHRD reduces a real general matrix A to upper Hessenberg form H by
an orthogonal similarity transformation: Q’ * A *x Q =H .

ILO
IHI

LDA

TAU

WORK

LWORK

DA

INFO

(input) INTEGER
The order of the matrix A. N >= 0.

(input) INTEGER

(input) INTEGER

It is assumed that A is already upper triangular in rows
and columns 1:IL0O-1 and IHI+1:N. ILO and IHI are normally
set by a previous call to DGEBAL; otherwise they should be
set to 1 and N respectively. See Further Details.

1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=O0.

(input/output) DOUBLE PRECISION array, dimension (LDA,N)

On entry, the N-by-N general matrix to be reduced.

On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
elements below the first subdiagonal, with the array TAU,
represent the orthogonal matrix Q as a product of elementary
reflectors. See Further Details.

(input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

(output) DOUBLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details). Elements 1:IL0-1 and IHI:N-1 of TAU are set to zero.

(workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = O, WORK(1) returns the optimal LWORK.

(input) INTEGER

The length of the array WORK. LWORK >= max(1,N).

For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

(workspace) DOUBLE array on the GPU, dimension
N*N + 2%N*NB + NB*NB,
where NB can be obtained through magma_get_dgehrd_nb(N).

(output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.

Further Details
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The matrix Q is represented as a product of (ihi-ilo) elementary
reflectors

Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Each H(i) has the form
H(i) = I - tau * v * v’
where tau is a real scalar, and v is a real vector with
v(1:i) = 0, v(i+1) =1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on

exit in A(i+2:ihi,i), and tau in TAU(i).

The contents of A are illustrated by the following example, with
n =7, ilo = 2 and ihi = 6:

on entry, on exit,

(a a a a a a a) (a a h h h h a)
( a a a a a a) ( a h h h h a)
( a a a a a a) ( h h h h h h)
( a a a a a a) ( v2 h h h h h)
( a a a a a a) ( v2 v3 h h h h)
( a a a a a a) ( v2 v3 v4 h h h)
( a ) ( a )

where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).

This implementation follows the algorithm and notations described in

S. Tomov and J. Dongarra, "Accelerating the reduction to upper Hessenberg
form through hybrid GPU-based computing," University of Tennessee Computer
Science Technical Report, UT-CS-09-642 (also LAPACK Working Note 219),

May 24, 2009.



Chapter 2

The MAGMA BLAS
Library

The MAGMA BLAS Library is a subset of CUDA BLAS. It is meant as a com-
plementary to the the CUBLAS Library provided by NVIDIA. Included are only
certain kernels that are crucial for the performance of MAGMA routines. Al-
though originally meant as an internal to MAGMA library, some of its routines
are general enough and are given a user interface to be used externally.

Provided are the matrix-matrix multiplication routines (gemm), matrix-
vector multiplication routines, and triangular matrix solvers in real arithmetic

(both single and double).
Two main techniques distinguishing the MAGMA BLAS Library are:

1. Auto-tuners — both the Beauty and the Beast behind MAGMA — an
elegant and very practical solution for easy maintenance and performance
portability, while often being a brute force, empirically-based exhaustive
search that would find and set automatically the best performing algo-
rithms/kernels for a specific hardware configuration.

2. Pointer redirecting — a set of GPU specific optimization techniques
that allow to easily remove performance oscillations associated with prob-
lem sizes not divisible by certain block sizes.

See [1, 2] for further detail.
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2.1 Matrix-Matrix Multiplication

2.1.1 Function magmablas_sgemm

void magmablas_sgemm(char TRANSA, char TRANSB, int m , int n, int k, float alpha,
const float *A, int lda, const float *B, int 1db, float beta,
float *C, int 1dc)

SGEMM performs one of the matrix-matrix operations
C := alpha*op( A )*op( B ) + beta*C,
where op( X ) is one of
op( X ) =X or op(X)=2X,
alpha and beta are scalars, and A, B and C are matrices, with op( A )
an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.

TRANSA - CHARACTERx*1.
On entry, TRANSA specifies the form of op( A ) to be used in
the matrix multiplication as follows:
TRANSA = °N’ or ’n’, op( A ) = A.
TRANSA = °T’ or ’t’, op( A ) = A’.
TRANSA = °C’ or ’c’, op( A ) = A’.
Unchanged on exit.

TRANSB - CHARACTER*1.
On entry, TRANSB specifies the form of op( B ) to be used in
the matrix multiplication as follows:
TRANSB = °N’ or ’n’, op( B ) = B.
TRANSB = °T’ or ’t’, op( B) B’.
TRANSB = °C’ or ’c’, op( B) B’.
Unchanged on exit.

M - INTEGER.
On entry, M specifies the number of rows of the matrix op(A) and of
the matrix C. M must be at least zero.
Unchanged on exit.

N - INTEGER.
On entry, N specifies the number of columns of the matrix op(B) and
the number of columns of the matrix C. N must be at least zero.
Unchanged on exit.

K - INTEGER.
On entry, K specifies the number of columns of the matrix op(A) and
the number of rows of the matrix op( B ). K must be at least zero.
Unchanged on exit.

ALPHA - SINGLE PRECISION.
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.

A - SINGLE PRECISION array of DIMENSION (LDA, ka), where ka is k when
TRANSA = ’N’ or ’n’, and is m otherwise. Before entry with TRANSA
= ’N’ or ’n’, the leading m by k part of the array A must contain
the matrix A, otherwise the leading k by m part of the array A
must contain the matrix A.

Unchanged on exit.



LDA

LDB

BETA

LDC

INTEGER.

On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. When TRANSA = °N’ or ’n’ then
LDA must be at least max( 1, m ), otherwise LDA must be at
least max( 1, k ).

Unchanged on exit.

SINGLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
n when TRANSB = ’N’ or ’n’, and is k otherwise.

Before entry with TRANSB = ’N’ or ’n’, the leading k by n
part of the array B must contain the matrix B, otherwise
the leading n by k part of the array B must contain the
matrix B.

Unchanged on exit.

INTEGER.

On entry, LDB specifies the first dimension of B as declared
in the calling (sub) program. When TRANSB = °N’ or ’n’ then
LDB must be at least max( 1, k ), otherwise LDB must be at
least max( 1, n ).

Unchanged on exit.

SINGLE PRECISION.

On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then C need not be set on input.

Unchanged on exit.

SINGLE PRECISION array of DIMENSION ( LDC, n ).

Before entry, the leading m by n part of the array C must
contain the matrix C, except when beta is zero, in which
case C need not be set on entry.

On exit, the array C is overwritten by the m by n matrix
( alphaxop( A )*op( B ) + betaxC ).

INTEGER.

On entry, LDC specifies the first dimension of C as declared
in the calling (sub) program. LDC must be at least
max( 1, m ).

Unchanged on exit.
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2.1.2 Function magmablas_dgemm

void magmablas_dgemm(char TRANSA, char TRANSB, int m, int n, int k, double alpha,
const double *A, int lda, const double *B, int 1db,
double beta, double *C, int 1ldc)

DGEMM performs one of the matrix-matrix operations
C := alpha*op( A )*op( B ) + beta*C,
where op( X ) is one of
op(X) =X or op(X) =X,
alpha and beta are scalars, and A, B and C are matrices, with op( A )
an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.

TRANSA - CHARACTER*1.
On entry, TRANSA specifies the form of op( A ) to be used in
the matrix multiplication as follows:
TRANSA = °N’ or ’n’, op( A) = A.
TRANSA = °T’> or ’t’, op( A ) = A’.
TRANSA = °C’ or ’c’, op( A) = A’.
Unchanged on exit.

TRANSB - CHARACTERx*1.
On entry, TRANSB specifies the form of op( B ) to be used in
the matrix multiplication as follows:
TRANSB = °N’ or ’n’, op( B ) = B.
TRANSB = ’T’ or ’t’, op( B ) B’.
TRANSB = °C’> or ’c’, op( B ) =B’.
Unchanged on exit.

M - INTEGER.
On entry, M specifies the number of rows of the matrix
op( A ) and of the matrix C. M must be at least zero.
Unchanged on exit.

N - INTEGER.
On entry, N specifies the number of columns of the matrix
op( B ) and the number of columns of the matrix C. N must be
at least zero.
Unchanged on exit.

K - INTEGER.
On entry, K specifies the number of columns of the matrix
op( A ) and the number of rows of the matrix op( B ). K must
be at least zero.
Unchanged on exit.

ALPHA - DOUBLE PRECISION.
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.

A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
k when TRANSA = °N’ or ’n’, and is m otherwise.
Before entry with TRANSA = ’N’ or ’n’, the leading m by k
part of the array A must contain the matrix A, otherwise
the leading k by m part of the array A must contain the
matrix A.
Unchanged on exit.



LDA

LDB

BETA

LDC

INTEGER.

On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. When TRANSA = °N’ or ’n’ then
LDA must be at least max( 1, m ), otherwise LDA must be at
least max( 1, k ).

Unchanged on exit.

DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
n when TRANSB = ’N’ or ’n’, and is k otherwise.

Before entry with TRANSB = ’N’ or ’n’, the leading k by n
part of the array B must contain the matrix B, otherwise
the leading n by k part of the array B must contain the
matrix B.

Unchanged on exit.

INTEGER.

On entry, LDB specifies the first dimension of B as declared
in the calling (sub) program. When TRANSB = °N’ or ’n’ then
LDB must be at least max( 1, k ), otherwise LDB must be at
least max( 1, n ).

Unchanged on exit.

DOUBLE PRECISION.

On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then C need not be set on input.

Unchanged on exit.

DOUBLE PRECISION array of DIMENSION ( LDC, n ).

Before entry, the leading m by n part of the array C must
contain the matrix C, except when beta is zero, in which
case C need not be set on entry.

On exit, the array C is overwritten by the m by n matrix
( alphaxop( A )*op( B ) + betaxC ).

INTEGER.

On entry, LDC specifies the first dimension of C as declared
in the calling (sub) program. LDC must be at least
max( 1, m ).

Unchanged on exit.
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2.2 Matrix-Vector Multiplication

2.2.1 Function magmablas_sgemv

void magmablas_sgemv(int n, int m, float *A, int lda, float *x, float *z)
This routine computes z = A x on the GPU.

N - (input) INTEGER.
On entry, N specifies the number of rows of the matrix A.

M - (input) INTEGER.
On entry, M specifies the number of columns of the matrix A

A - (input) SINGLE PRECISION array of dimension ( LDA, m ) on the GPU.

LDA - (input) INTEGER.
LDA specifies the leading dimension of A.

X - (input) SINGLE PRECISION array of dimension m.

Z - (output) SINGLE PRECISION array of dimension m.
On exit Z = A X.

void magmablas_sgemvt(int m, int n, float alpha, float *A, int lda,
float *x, float *z)

This routine computes z = alpha A"t x on the GPU.

M - (input) INTEGER.
On entry, N specifies the number of rows of the matrix A.

N - (input) INTEGER.
On entry, M specifies the number of columns of the matrix A

A - (input) SINGLE PRECISION array of dimension ( LDA, n ) on the GPU.
LDA - (input) INTEGER.
LDA specifies the leading dimension of A.
X - (input) SINGLE PRECISION array of dimension n.
Z - (output) SINGLE PRECISION array of dimension n.

On exit Z = alpha A"t X.
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2.2.2 Function magmablas_dgemv

void magmablas_dgemv(int n, int m, double *A, int lda, double *x, double *z)

This routine computes z = A x on the GPU.

N

LDA

(input) INTEGER.
On entry, N specifies the number of rows of the matrix A.

(input) INTEGER.
On entry, M specifies the number of columns of the matrix A

(input) DOUBLE PRECISION array of dimension ( LDA, m ) on the GPU.

(input) INTEGER.
LDA specifies the leading dimension of A.

(input) DOUBLE PRECISION array of dimension m.

(output) DOUBLE PRECISION array of dimension m.
On exit Z = A X.

void magmablas_dgemvt(int m, int n, double alpha, double *A, int lda,

double *x, double *z)

This routine computes z = alpha A"t x on the GPU.

M

LDA

(input) INTEGER.
On entry, N specifies the number of rows of the matrix A.

(input) INTEGER.
On entry, M specifies the number of columns of the matrix A

(input) SINGLE PRECISION array of dimension ( LDA, n ) on the GPU.

(input) INTEGER.
LDA specifies the leading dimension of A.

(input) DOUBLE PRECISION array of dimension n.

(output) DOUBLE PRECISION array of dimension n.
On exit Z = alpha A"t X.
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2.3 Symmetric Matrix-Vector multiplication

2.3.1 Function magmablas_ssymv

int magmablas_ssymv(char uplo, int m, float alpha, float *A, int lda, float *X,
int incx, float beta, float *Y, int incy)

SSYMV performs the matrix-vector operation

y := alphaxA*x + betaxy,
where alpha and beta are scalars, x and y are n element vectors and
A is an n by n symmetric matrix.

UPLO CHARACTER*1.
On entry, UPLO specifies whether the upper or lower triangular
part of the array A is to be referenced as follows:
UPLO = ’U’ or ’u’ Only the upper triangular part of A
is to be referenced.
UPLO = ’L’ or ’1’ Only the lower triangular part of A
is to be referenced.
Unchanged on exit.

N INTEGER.
On entry, N specifies the order of the matrix A.
N must be at least zero.
Unchanged on exit.

ALPHA REAL.
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.

A REAL array of DIMENSION ( LDA, n ).
Before entry with UPLO = U’ or ’u’, the leading n by n
upper triangular part of the array A must contain the upper
triangular part of the symmetric matrix and the strictly
lower triangular part of A is not referenced.
Before entry with UPLO = ’L’ or ’1’, the leading n by n
lower triangular part of the array A must contain the lower
triangular part of the symmetric matrix and the strictly
upper triangular part of A is not referenced.
Unchanged on exit.

LDA INTEGER.
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least
max( 1, n ).
Unchanged on exit.

X REAL array of dimension at least
(1+ (n-1)=*abs( INCX ) ).
Before entry, the incremented array X must contain the n
element vector x.
Unchanged on exit.

INCX INTEGER.
On entry, INCX specifies the increment for the elements of



BETA

INCY
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X. INCX must not be zero.
Unchanged on exit.

REAL.

On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then Y need not be set on input.
Unchanged on exit.

REAL array of dimension at least

(1+ (n -1 )=*abs( INCY ) ).

Before entry, the incremented array Y must contain the n
element vector y. On exit, Y is overwritten by the updated
vector y.

INTEGER.

On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.

Unchanged on exit.
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2.3.2 Function magmablas_dsymv

int magmablas_dsymv(char uplo, int m, double alpha, double *A, int lda,
double *X, int incx, double beta, double *Y, int incy)

DSYMV performs the matrix-vector operation

y := alphaxA*x + betaxy,
where alpha and beta are scalars, x and y are n element vectors and
A is an n by n symmetric matrix.

UPLO CHARACTER*1.
On entry, UPLO specifies whether the upper or lower
triangular part of the array A is to be referenced as
follows:
UPLO = ’U’ or ’u’ Only the upper triangular part of A
is to be referenced.
UPLO = ’L’> or ’1’ Only the lower triangular part of A
is to be referenced.
Unchanged on exit.

N INTEGER.
On entry, N specifies the order of the matrix A.
N must be at least zero.
Unchanged on exit.

ALPHA DOUBLE PRECISION.
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.

A DOUBLE PRECISION array of DIMENSION ( LDA, n ).
Before entry with UPLO = U’ or ’u’, the leading n by n
upper triangular part of the array A must contain the upper
triangular part of the symmetric matrix and the strictly
lower triangular part of A is not referenced.
Before entry with UPLO = °L’ or ’1’, the leading n by n
lower triangular part of the array A must contain the lower
triangular part of the symmetric matrix and the strictly
upper triangular part of A is not referenced.
Unchanged on exit.

LDA INTEGER.
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least
max( 1, n ).
Unchanged on exit.

X DOUBLE PRECISION array of dimension at least
(1+ (n-1)*abs( INCX ) ).
Before entry, the incremented array X must contain the n
element vector x.
Unchanged on exit.

INCX INTEGER.
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
Unchanged on exit.



BETA

INCY

DOUBLE PRECISION.

On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then Y need not be set on input.
Unchanged on exit.

DOUBLE PRECISION array of dimension at least

(1+ (n-1)*abs( INCY ) ).

Before entry, the incremented array Y must contain the n
element vector y. On exit, Y is overwritten by the updated
vector y.

INTEGER.

On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.

Unchanged on exit.
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2.4 Triangular Matrix Solvers

2.4.1 Function magmablas_strsm

int magmablas_strsm(char side, char uplo, char tran, char diag, int M, int N,
float alpha, float* A, int lda, float* b, int 1db)

STRSM solves one of the matrix equations on GPU
op( A )*X = alpha*B, or X*op( A ) = alphax*B,
where alpha is a scalar, X and B are m by n matrices, A is a unit, or
non-unit, upper or lower triangular matrix and op( A ) is one of
op( A)=A or op(A)=A.

The solution matrix X overwrites B.

To extract more parallelism and performance, the diagonal blocks of A
of size 32x32 are explicitly inverted. When M or N is not a multiple of
the current blocking size (32 for now), cublasStrsm is called instead.

side CHARACTER*1.
On entry, side specifies whether op( A ) appears on the left
or right of X as follows:
side = ’L’> or ’1> op( A )*X
side = ’R’ or ’r’ Xxop( A )
Unchanged on exit.

alpha*B.
alpha*B.

uplo CHARACTER*1.
On entry, uplo specifies whether the matrix A is an upper or
lower triangular matrix as follows:
uplo = ’U’ or ’u’ A is an upper triangular matrix.
uplo = ’L’ or ’1° A is a lower triangular matrix.
Unchanged on exit.

tran CHARACTER*1.
On entry, tran specifies the form of op( A ) to be used in
the matrix multiplication as follows:
tran = ’N’ or 'n’ op( A ) = A.
tran = T’ or ’t> op( A ) =A’.
tran = °C’ or ’c’ op( A ) =A’.
Unchanged on exit.

diag CHARACTER*1.
On entry, diag specifies whether or not A is unit triangular
as follows:
diag = ’U’ or ’u’ A is assumed to be unit triangular.
diag = ’N’ or ’mn’ A is not assumed to be unit triangular.
Unchanged on exit.

m INTEGER.
On entry, m specifies the number of rows of B. m must be at
least zero.
Unchanged on exit.

n INTEGER.
On entry, n specifies the number of columns of B. n must be
at least zero.



alpha

lda

1db

Unchanged on exit.

REAL.

On entry, alpha specifies the scalar alpha. When alpha is
zero then A is not referenced and B need not be set before
entry.

Unchanged on exit.

REAL array of DIMENSION ( lda, k ), where k is m

when side = 'L’ or ’1’ and is n when side = ’R’ or ’r’.
Before entry with wuplo = U’ or ’u’, the leading k by k
upper triangular part of the array A must contain the upper
triangular matrix and the strictly lower triangular part of
A is not referenced.

Before entry with uplo = 'L’ or ’1’, the leading k by k
lower triangular part of the array A must contain the lower
triangular matrix and the strictly upper triangular part of
A is not referenced.

Note that when diag = ’U’ or ’u’, the diagonal elements of
A are not referenced either, but are assumed to be unity.
Unchanged on exit.

INTEGER.

On entry, lda specifies the first dimension of A as declared
in the calling (sub) program. When side = ’L’> or ’1’ then
lda must be at least max( 1, m ), when side = R’ or ’r’
then lda must be at least max( 1, n ).

Unchanged on exit.

REAL array of DIMENSION ( 1db, n ).

Before entry, the leading m by n part of the array B must
contain the right-hand side matrix B, and on exit is
overwritten by the solution matrix X.

INTEGER.

On entry, 1db specifies the first dimension of B as declared
in the «calling (sub) program. 1db must be at least
max( 1, m ).

Unchanged on exit.
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2.4.2 Function magmablas_dtrsm

int magmablas_dtrsm(char side, char uplo, char tran, char diag, int M, int N,
double alpha, doublex A, int lda, double* b, int 1db)

DTRSM solves one of the matrix equations on GPU
op( A )*X = alpha*B, or X*op( A ) = alpha*B,
where alpha is a scalar, X and B are m by n matrices, A is a unit, or
non-unit, upper or lower triangular matrix and op( A ) is one of
op( A) =A or op(A)=A.
The matrix X is overwritten on B.

To extract more parallelism and performance, the diagonal blocks of A
of size 32x32 are explicitly inverted. When M or N is not a multiple of
the current blocking size (32 for now), cublasStrsm is called instead.

side CHARACTER*1.
On entry, side specifies whether op( A ) appears on the left
or right of X as follows:
side = ’L’> or ’1> op( A )*X = alpha*B.
side = ’R’ or ’r’  Xxop( A ) = alpha*B.
Unchanged on exit.

uplo CHARACTER*1.
On entry, uplo specifies whether the matrix A is an upper or
lower triangular matrix as follows:
uplo = ’U’ or ’u’ A is an upper triangular matrix.
uplo = ’L’ or ’1° A is a lower triangular matrix.
Unchanged on exit.

tran CHARACTER*1.
On entry, tran specifies the form of op( A ) to be used in
the matrix multiplication as follows:
tran = N’ or ’n’ op( A ) = A.
tran = °T’ or ’t’ op( A ) =A’.
tran = °C’> or ’c’> op( A) =A’.
Unchanged on exit.

diag CHARACTER*1.
On entry, diag specifies whether or not A is unit triangular
as follows:

diag = ’U’ or ’u’ A is assumed to be unit triangular.
diag = ’N’ or ’n’ A is not assumed to be unit
triangular.

Unchanged on exit.

m INTEGER.
On entry, m specifies the number of rows of B. m must be at
least zero.
Unchanged on exit.

n INTEGER.
On entry, n specifies the number of columns of B. n must be
at least zero.
Unchanged on exit.

alpha DOUBLE PRECISION.
On entry, alpha specifies the scalar alpha. When alpha is



lda

1db

zero then A is not referenced and B need not be set before
entry.
Unchanged on exit.

DOUBLE PRECISION array of DIMENSION ( lda, k ), where k is m
when side = 'L’ or ’1’ and is n when side = ’R’ or ’r’.
Before entry with wuplo = U’ or ’u’, the leading k by k
upper triangular part of the array A must contain the upper
triangular matrix and the dtrictly lower triangular part of
A is not referenced.

Before entry with wuplo = ’L’ or ’1’, the leading k by k
lower triangular part of the array A must contain the lower
triangular matrix and the dtrictly upper triangular part of
A is not referenced.

Note that when diag = ’U’ or ’u’, the diagonal elements of
A are not referenced either, but are assumed to be wunity.
Unchanged on exit.

INTEGER.

On entry, lda specifies the first dimension of A as declared
in the calling (sub) program. When side = ’L’ or ’1’ then
lda must be at least max( 1, m ), when side = ’R’ or ’r’

then lda must be at least max( 1, n ).
Unchanged on exit.

DOUBLE PRECISION array of DIMENSION ( 1db, n ).

Before entry, the leading m by n part of the array B must
contain the right-hand side matrix B, and on exit is
overwritten by the solution matrix X.

INTEGER.
On entry, 1ldb specifies the first dimension of B as declared
in the calling (sub) program. 1db must be at least

max( 1, m ).
Unchanged on exit.
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Chapter 3

Use

3.1 Hardware specifications

MAGMA version 0.2 is intended for a single CUDA enabled NVIDIA GPU
and it’s host. CUDA enabled GPUs are for example the GeForce 8 Series, the
Tesla GPUs, and some Quadro GPUs [3]. MAGMA'’s double precision routines
can be used on CUDA enabled GPUs that support double precision arithmetic.
These are for example the GeForce 200 Series and the Tesla solutions. The
host can be any shared memory multiprocessor for which LAPACK is suitable.
One host core is required and multiple can be used through multicore LAPACK
implementation.

3.2 Software specifications

MAGMA version 0.2 is a Linux release that requires
e the CUDA driver and CUDA toolkit '
e CPU BLAS and LAPACK.

MAGMA users do not have to know CUDA in order to use the library. A
testing directory gives examples on how to use every function (see Section 3.3).
Applications can use the CPU interface without any significant change to the
application — LAPACK calls have to be prefixed with magma_ and a workspace
argument (for the GPU memory) has to be added (shown in the examples).

Lreely available from NVIDIA
http://www.nvidia.com/object/cuda_get.html
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3.3 Examples and testing

Directory magma/testing has drivers that test and show how to use every
function of this distribution. Below is an example showing the output of the
sgetrf_gpu driver.

> ./testing_sgetrf_gpu
Using device 0: GeForce GTX 280

Usage:
testing_sgetrf_gpu -N 1024

N CPU GFlop/s GPU GFlop/s | IPA-LUI| / CI1A][*N)
1024 34.36 45.92 1.861593e-09
2048 52.85 105.63 1.722339e-09
3072 64.19 162.94 1.411851e-09
4032 80.45 225.07 1.384447e-09
5184 86.43 260.74 1.346531e-09
6016 91.01 277.32 1.341646e-09
7040 95.62 292.25 1.322844e-09
8064 99.71 302.55 1.388576e-09
9088 101.09 310.33 1.554564e-09

10112 103.65 316.23 1.660534e-09

Performance and accuracy for particular values of the matrix size can also be
tested. Note that performance is slower for matrix sizes that are not divisible by
the block size of the corresponding algorithm. The block sizes will be auto-tuned
in future releases. Currently, the user can change them through file get_nb. cpp
to manually tune the performance for specific hardware and software settings.
Some of the performance issues related to matrix sizes not divisible by the
block size are addressed on BLAS level (thorough MAGMA BLAS). It still
needs improvements though:

> ./testing_sgetrf_gpu -N 5000
Using device 0: GeForce GTX 280

N CPU GFlop/s GPU GFlop/s [ IPA-LUI| / CI1A][*N)

5000 86.58 230.94 1.340746e-09



Chapter 4

Performance

Here we give the reference performance results using MAGMA version 0.2 in
the following hardware and software configuration:

GPU: NVIDIA GeForce GTX 280;

CPU: Intel Xeon dual socket quad-core @ 2.33 GHz;
GPU BLAS: CUBLAS 2.3;

CPU BLAS: MKL 10.0;

Compiler: gcc 4.1.2;

Tuning: Hand tuned (and hard coded).

Note that this release is hand tuned for this particular configuration. Dif-
ferent configurations may require different tuning in which case there would be
a negative impact on the performance. Future releases will be auto-tuned using
an empirically-based approach [1]. A handle to user tuning is given in file
testing/get nb.cpp
through functions
magma _get_{function name} nb
which, based on a matrix size, return a block size to be used by the correspond-
ing function. Optimal sizes (for the functions in this distribution) would be a
multiple of 32.
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4.1 Single precision one-sided factorizations

MAGMA v0.2 - Performance on GTX280
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Figure 4.1: Performance of the CPU interface one-sided factorizations.
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Figure 4.2: Performance of the GPU interface one-sided factorizations.
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4.2 Double precision one-sided factorizations

MAGMA v0.2 - Performance on GTX280
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Figure 4.3: Performance of the CPU interface one-sided factorizations.
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Figure 4.4: Performance of the GPU interface one-sided factorizations.
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4.3 Single complex one-sided factorizations

MAGMA v0.2 - Performance on GTX280
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Figure 4.5: Performance of the CPU interface one-sided factorizations.
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Figure 4.6: Performance of the GPU interface one-sided factorizations.
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4.4 Double complex one-sided factorizations
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Figure 4.7: Performance of the CPU interface one-sided factorizations.
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Figure 4.8: Performance of the GPU interface one-sided factorizations.



4.5

GFlop/s

LU-based linear solvers

MAGMA v0.2 - LU-based Solvers on GTX280
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Figure 4.9: Performance of LU-based linear solvers.
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4.6

GFlop/s

QR-based least squares solvers

MAGMA v0.2 - QR-based Solvers on GTX280
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Figure 4.10: Performance of QR-based least squares solvers.
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GFlop/s

Cholesky-based linear solvers

MAGMA v0.2 - Cholesky-based Solvers on GTX280
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Figure 4.11: Performance of Cholesky-based linear solvers.
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4.8

GFlop/s
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Figure 4.12: Single precision MAGMA vs MKL
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Figure 4.13: Double precision MAGMA vs MKL



4.9 MAGMA BLAS

Some MAGMA BLAS vs CUBLAS Performance Results in GFlop/s

N cudablas-2.3 MAGMA BLAS v0.2
sgemm 1025 180.23 308.12
2049 191.32 340.89
3073 190.47 350.15
4097 190.92 354.62
sgemv 1088 5.60 18.64
2240 11.79 38.60
3136 16.40 50.56
4352 22.64 60.61
ssymv 1088 2.29 24.66
2240 2.70 38.30
3136 2.77 30.49
4352 2.61 40.82
strsm 1088 0.17 1.10
(1 rhs) 2240 0.21 2.30
3136 0.22 2.97
4352 0.23 3.78
dgemm 1025 51.04 68.35
2049 51.93 72.15
3073 52.21 72.95
4097 52.34 73.74
dgemv 1088 5.26 11.11
2240 10.84 20.19
3136 14.77 23.78
4352 19.11 23.96
dsymv 1088 4.77 8.22
2240 4.06 11.78
3136 3.82 12.48
4352 2.27 13.53
dtrsm 1088 0.07 0.86
(1 rhs) 2240 0.08 1.85
3136 0.09 2.42
4352 0.09 3.06
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