
PULSAR Users’ Guide

Parallel Ultra-Light Systolic Array Runtime

Version 2.0
November, 2014

LAPACK Working Note 288

Technical Report UT-EECS-14-733

Electrical Engineering and Computer Science
University of Tennessee

alphabetically Jack Dongarra
Jakub Kurzak

Piotr Luszczek
Ichitaro Yamazaki

And now I see with eye serene
The very pulse of the machine.

– WilliamWordsworth

Contents

1 Essentials 1
1.1 Problems for which PULSAR is Suitable 1
1.2 Computers for which PULSAR is Suitable 1
1.3 So�ware Components that PULSAR Requires 2
1.4 Availability of PULSAR . 2
1.5 Documentation of PULSAR . 2
1.6 Commercial Use of PULSAR . 3
1.7 PULSAR Support . 3
1.8 PULSAR Funding . 3
1.9 Hardware Allocations for PULSAR . 3

2 Fundamentals 4
2.1 Tuple . 5
2.2 Packet . 5
2.3 Channel . 5
2.4 Virtual Data Processor . 6
2.5 Virtual Systolic Array . 7

3 Further Details 9
3.1 VSA Construction . 9

3.1.1 VSA Creation, Execution and Deletion 9
3.1.2 VDP Creation and Insertion . 10
3.1.3 Channel Creation and Insertion 11
3.1.4 Mapping of VDPs to Threads and Devices 12
3.1.5 VSA Con�guration . 12

3.2 VDP Operation . 13

ii

3.2.1 Packet Creation and Deletion . 13
3.2.2 Packet Reception and Ejection . 14
3.2.3 Channel Deactivation and Reactivation 15

3.3 Handling of Tuples . 15

iii

Preface

PULSAR version 2.0, released in November 2014, is a complete programming
platform for large-scale distributed memory systems with multicore processors
and hardware accelerators. PULSAR provides a simple abstraction layer over
multithreading, message passing, and multi-GPU, multi-stream programming.
PULSAR o�ers a general-purpose programming model, suitable for a wide range
of scienti�c and engineering applications. PULSARwas inspired by systolic arrays,
popularized by Hsiang-Tsung Kung and Charles E. Leiserson [1, 2, 3].

iv

CHAPTER 1

Essentials

PULSAR is a programmingmodel and a runtime scheduling system implementing
that model, that are inspired by systolic arrays. The name PULSAR is an acronym
for Parallel Ultra Light Systolic Array Runtime. PULSAR project website is located at:

http://icl.utk.edu/pulsar/

1.1 Problems for which PULSAR is Suitable

PULSAR is suitable for implementing any algorithm, for which the message-
passing paradigm is suitable. In the past, PULSAR has been used mainly to imple-
ment dense linear algebra algorithms. Currently, the PULSAR team targets deep
learning algorithms. PULSAR is also a natural match for stencil computations.

1.2 Computers for which PULSAR is Suitable

PULSAR is suitable for any parallel computer, as it o�ers e�cient multithreading
for multicore processors, multi-GPU, multi-stream execution on hybrid comput-
ers, and message-passing on distributed-memory systems.

1

http://icl.utk.edu/pulsar/

1.3. SOFTWARE COMPONENTS THAT PULSAR REQUIRES

1.3 So�ware Components that PULSARRequires

PULSAR requires POSIX threads for multithreading, NVIDIA CUDA for multi-
GPU programming and MPI for message-passing. However, PULSAR can be built
without CUDA and without MPI for testing and prototyping.

1.4 Availability of PULSAR

PULSAR is distributed as source code and is meant to be compiled from source on
the host system. In certain cases, a pre-built binary may be provided along with
the source code. Such packages, built by the PULSAR developers, will be provided
as separate archives on the PULSAR download page:

http://icl.utk.edu/pulsar/software/

The PULSAR team does not reserve an exclusive right to provide such packages.
They can be provided by other individuals or institutions. However, in case of
problems with binary distributions acquired from other places, the provider needs
to be asked for support rather than the PULSAR developers.

1.5 Documentation of PULSAR

The PULSAR package comes with a variety of documentation including:

• The PULSAR Users’ Guide (this document)

• The PULSAR Reference Manual

• The PULSAR README

• The PULSAR Release Notes

• The PULSAR Installation Instructions

You will �nd all of these in the documentation section on the PULSAR website:

http://icl.utk.edu/pulsar/ → Documentation

2

http://icl.utk.edu/pulsar/software/
http://icl.utk.edu/pulsar/

1.6. COMMERCIAL USE OF PULSAR

1.6 Commercial Use of PULSAR

PULSAR is a freely available so�ware package with a license that allows its use or
inclusion in commercial packages. The PULSAR team asks only that proper credit
be given by citing this users’ guide as the o�cial reference for PULSAR.

Like all so�ware, this package is copyrighted. It is not trademarked. However, if
modi�cations are made that a�ect the interface, functionality, or accuracy of the
resulting so�ware, the name of the routine should be changed and the modi�ca-
tions to the so�ware should be noted in the modi�er’s documentation.

The PULSAR team will gladly answer questions regarding this so�ware. If modi�-
cations are made to the so�ware, however, it is the responsibility of the individual
or institution who modi�ed the routine to provide the support.

1.7 PULSAR Support

PULSAR has been thoroughly tested before its release by using multiple combi-
nations of machine architectures, compilers and libraries. The PULSAR project
supports the package in the sense that reports of errors or poor performance will
gain immediate attention from the developers. Such reports – and also descrip-
tions of interesting applications and other comments – should be posted to the
PULSAR’s User Forum:

http://icl.utk.edu/pulsar/forum/

1.8 PULSAR Funding

PULSAR was funded by the National Science Foundation, under grant #1117062
entitled SHF: Small: Parallel Uni�ed Linear algebra with Systolic ARrays (PULSAR).

1.9 Hardware Allocations for PULSAR

Computing cycles for the development of PULSAR have beenmainly provided by
the National Institute for Computational Science (NICS).

3

http://icl.utk.edu/pulsar/forum/

CHAPTER 2

Fundamentals

The PULSAR programming model relies on the following �ve abstractions to de-
�ne the processing pattern:

Virtual Systolic Array (VSA) is a set of VDPs connected with channels.

Virtual Data Processor (VDP) is the basic processing element in the VSA.

Channel is a point-to-point connection between a pair of VDPs.

Packet is the basic unit of information transferred in a channel.

Tuple is a unique VDP identi�er.

It also relies on the following two abstractions tomap the processing pattern to the
actual hardware:

Thread is synonymous with a CPU thread or a collection of threads.

Device is synonymous with an accelerator device (GPU, Xeon Phi, etc.)

The sections to follow describe the roles of the di�erent entities, how the VDP op-
eration is de�ned, how the VSA is constructed, and how the VSA is mapped to the

4

2.1. TUPLE

hardware. These operations are accessible to the user through PULSAR’s Applica-
tion Programming Interface (API), which is currently available with C bindings.

2.1 Tuple

Tuples are strings of integers. Each VDP is uniquely identi�ed by a tuple. Tuples
can be of any length, and di�erent length tuples can be used in the same VSA. Two
tuples are identical if they are of the same length and have identical values of all
components. Tuples are created using the variadic function prt tuple new(),
which takes a (variable length) list of integers as its input. The user only creates tu-
ples. A�er creation, tuples are passed to VDP constructors and channel construc-
tors. They are destroyed by the runtime at the time of destroying those objects. As
a general rule in PULSAR, the user only creates objects, and looses their ownership
a�er passing them to the runtime.

2.2 Packet

Packets are basic units of information exchanged through channels connecting
VDPs. A packet contains a reference to a continuous piece of memory of a given
size. Conceptually, packets are created by VDPs. The user can use the VDP func-
tion prt vdp packet new() to create a newpacket. A packet can be created from
preallocatedmemory by providing the pointer. Alternatively, newmemory can be
allocated by providing a NULL pointer. The VDP can fetch a packet from an in-
put channel using the function prt vdp channel pop(), and push a packet to an
output channel using the function prt vdp channel push(). The VDP does not
loose the ownership of the packet a�er pushing it to a channel. The packet can be
used until the prt vdp packet release() function is called, which discards it.

2.3 Channel

Channels are unidirectional point-to-point connections betweenVDPs, used to ex-
change packets. Each VDP has a set of input channels and a set of output channels.
Packets can be fetched from input channels and pushed to output channels. Chan-
nels in each set are assigned consecutive numbers starting from zero (slots). Chan-
nels are created by using the prt channel new() function. The user does not
destroy channels. The runtime destroys channels at the time of destroying the
VDP. A�er creation, each channel has to be inserted in the appropriate VDP, us-
ing the prt vdp channel insert() function. The user has to insert a full set of

5

2.4. VIRTUAL DATA PROCESSOR

channels into each VDP. At the time of inserting the VDP in the VSA, the system
joins channels that identify the same communication path.

2.4 Virtual Data Processor

The VDP is the basic processing element of the VSA (Figure 2.1). Each VDP is
uniquely identi�ed by a tuple and assigned a function which de�nes its operation.
Within that function, the VDP has access to a set of global parameters, its private,
persistent local storage, and its channels. The runtime invokes that function when
there are packets in all of the VDP’s input channels. This is called �ring. When the
VDP �res, it can fetch packets from its input channels, call computational kernels,
and push packets to its output channels. It is not required that these operations
are invoked in any particular order. The VDP �res a prescribed number of times.
When the VDP’s counter goes down to zero, the VDP is destroyed. The VDP has
access to its tuple and its counter. Figure 2.2 shows simple VDPprocessing patterns.

Figure 2.1: Virtual Data Processor.

At the time of the VDP creation, the user speci�es if the VDP resides on a CPU
or on an accelerator. This is an important distinction, because the code of a CPU
VDP has synchronous semantics, while the code of an accelerator VDP has asyn-
chronous semantics. For a CPU VDP, actions are executed as they are invoked,
while for an accelerator VDP, actions are queued for execution a�er preceding ac-
tions complete. In the CUDA implementation, each VDP has its own stream. All
kernel invocations have to be asynchronous calls, placed in the VDP’s stream. The
runtime will also place all channel operations in the VDP’s stream.

6

2.5. VIRTUAL SYSTOLIC ARRAY

prt_packet_t *packet = prt_vdp_packet_new(vdp, ...);
kernel_that_writes(..., packet->data, ...);
prt_vdp_channel_push(vdp, slot, packet);
prt_vdp_packet_release(vdp, packet);

prt_packet_t *packet = prt_vdp_channel_pop(vdp, slot);
kernel_that_modifies(..., packet->data, ...);
prt_vdp_channel_push(vdp, slot, packet);
prt_vdp_packet_release(vdp, packet);

prt_packet_t *packet = prt_vdp_channel_pop(vdp, slot);
prt_vdp_channel_push(vdp, slot, packet);
kernel_that_reads(..., packet->data, ...);
prt_vdp_packet_release(vdp, packet);

Figure 2.2: Simple VDP processing patterns.

2.5 Virtual Systolic Array

VSA contains all VDPs and their channel connections (Figure 2.3), and stores
the information about the mapping of VDPs to the hardware. The VSA needs
to be created �rst and then launched. An empty VSA is created using the
prt vsa new() function. Then VDPs can be inserted in the VSA using the
prt vsa vdp insert() function. Then the VSA can be executed using the
prt vsa run() function, and then destroyed using theprt vsa delete() func-
tion. Figure 2.4 shows the basic VSA construction and execution process.

At the time of creation, using the prt vsa new() function, the user provides the
number of CPU threads to launch per each distributed memory node, and the
number of accelerator devices to use per each node. The user also provides a func-
tion for mapping VDPs to threads and devices. The function takes as parameters:
the VDP’s tuple, the total number of threads, and the total number of devices, and
returns a structure indicating if the VDP is assigned to a thread or a device, and the
global rank of the thread or device, where the VPD resides.

VSA construction can be replicated or distributed. The replicated construction is
more straightforward, from the user’s perspective. In the replicated construction,
each MPI process inserts all the VDPs, and the system �lters out the ones that do
not belong in a given node, based on the mapping function. However, the VSA
construction process is inherently distributed, so each process can also insert only
the VDPs that belong in that process.

7

2.5. VIRTUAL SYSTOLIC ARRAY

Figure 2.3: Virtual Systolic Array.

prt_vsa_t *vsa = prt_vsa_new(num_threads, num_devices, ...);

for (v = 0; v < vdps; v++) {
prt_vdp_t *vdp = prt_vdp_new(...);
for (in = 0; in < inputs; in++) {

prt_channel_t *input = prt_channel_new(...);
prt_vdp_channel_insert(vdp, input, ...);

}
for (out = 0; out < outputs; out++) {

prt_channel_t *output = prt_channel_new(...);
prt_vdp_channel_insert(vdp, output, ...)

}
prt_vsa_vdp_insert(vsa, vdp, ...);

}
double time = prt_vsa_run(vsa);
prt_vsa_delete(vsa);

Figure 2.4: Basic VSA construction process.

8

CHAPTER 3

Further Details

3.1 VSAConstruction

3.1.1 VSACreation, Execution and Deletion

An empty VSA is created using the prt vsa new() function. The function takes
as parameters: the number of threads per node, the number of devices per node, a
pointer to the global store, accessible to all VDPs in a read-onlymode, and a pointer
to the function for mapping VDPs to threads and devices. The function returns a
pointer to a new VSA with an empty set of VDPs. See section 3.1.4 for the descrip-
tion of the parameters of the mapping function. If MPI is used, MPI Init() has
to be called before prt vsa new().

prt_vsa_t *prt_vsa_new(
int num_threads,
int num_devices,
void* global_store,
prt_mapping_t (*)(int*, void*, int, int)vdp_mapping)

A�er creation, the VSAhas to be populated with VDPs, as described in section 3.1.2.
Then the VSA can be launched using the prt vsa run() function. The function
takes a pointer to the VSA as the parameter and returns the execution time in sec-
onds as a double precision �oating point number.

9

3.1. VSA CONSTRUCTION

double prt_vsa_run(prt_vsa_t *vsa)

The VSA has a few con�guration parameters, which can be changed at any time
a�er the creation of the VSA and before the launch of the VSA, as described in
section 3.1.5.

A�er execution, the VSA can be destroyed using the prt vsa delete() function.
The function takes a pointer to the VSAas the parameter and destroys all resources
associated with the VSA.

void prt_vsa_delete(prt_vsa_t *vsa)

3.1.2 VDPCreation and Insertion

A VDP is created using the prt vdp new() function. The function takes as pa-
rameters: the VDP’s tuple, the VDP’s counter (the number of times the VDP will
be �red), a pointer to the function implementing the VDP’s operation, the size in
bytes of the VDP’s local store, the number of input channels, the number of out-
put channels, and the RGB color for tracing, when using PULSAR’s internal tracing
(section 3.1.5). The function returns a pointer to a new VDP.

prt_vdp_t *prt_vdp_new(
int *tuple,
int counter,
prt_vdp_function_t vdp_function,
size_t local_store_size,
int num_inputs,
int num_outputs,
int color)

A�er creation, the VDP has to be populated with channels, as described
in section 3.1.3. Then the VDP can be inserted into the VSA using the
prt vsa vdp insert() function. The function takes a pointer to the VSA and
a pointer to the VDP as parameters.

void prt_vsa_vdp_insert(prt_vsa_t *vsa, prt_vdp_t *vdp)

The user does not free the VDP. At the time of calling prt vsa vdp insert(),
the runtime takes ownership of the VDP. The VDPwill be destroyed in the process
of the VSA’s execution or at the time of calling prt vsa delete(). User’s attempt
to free the VDP are likely to cause a crash.

The user has to de�ne the VDP’s function. The runtime invokes that functionwhen
packets are available in all of the VDP’s channels, which is called �ring.

void vdp_function(prt_vdp_t *vdp)

10

3.1. VSA CONSTRUCTION

Inside that function, the user has access to the VDP object. In particular, the user
has access to the following �elds:

void *global_store
void *local_store
int *tuple
int counter
prt_location_t location
cudaStream_t stream

global store is the read-only global storage area, passed to the VSA at the time
of creation (section 3.1.1). local store is the VDP’s private local storage areal,
which is persistent between �rings. tuple is the VDP’s unique tuple, assigned
at the time of creation. counter is the VDP’s counter. At the �rst �ring, the
counter is equal to the value assigned at the time of the VDP’s creation. At each
�ring the counter is decremented by one. At the last �ring the counter is equal
one. location indicated if the VDP is a CPU VDP or a GPU VDP. The value
PRT LOCATION HOST indicates a CPU. The value PRT LOCATION DEVICE indi-
cates a GPU. Finally, stream contains the CUDA stream of a GPU VDP.

3.1.3 Channel Creation and Insertion

Achannel is created using the prt channel new() function. The function takes a
parameters: the size of the channel, which indicates the maximum size of packets
intended to be transmitted in that channel, the tuple of the sourceVDP (the sender),
the slot number in the source VDP, the tuple of the destination VDP (the receiver),
and the slot number in the destination VDP.

prt_channel_t* prt_channel_new(
size_t size,
int *src_tuple,
int src_slot,
int *dst_tuple,
int dst_slot)

A�er creation, the channel can be inserted into the a VDP using the
prt vdp channel insert() function. The function takes as parameter: the
pointer to the VDP, the pointer to the channel, the direction of the channel from
the standpoint of that VDP, and the slot number in that VDP.

void prt_vdp_channel_insert(
prt_vdp_t *vdp,
prt_channel_t *channel,
prt_channel_direction_t direction,
int slot)

11

3.1. VSA CONSTRUCTION

The user does not free the channel. At the time of calling
prt vdp channel insert(), the runtime takes ownership of the channel.
The channel will be destroyed in the process of the VSA’s execution or at the time
of calling prt vsa delete(). User’s attempt to free the channel are likely to
cause a crash.

3.1.4 Mapping of VDPs to Threads and Devices

The user de�nes the placement of VDPs on CPUs and GPUs by providing themap-
ping function at the time of the VSA creation with prt vsa new() (section 3.1.1).
The runtime calls that function for each VDP and passes as parameters: the VDP’s
tuple, the pointer to the global store, the total number of CPU threads at the VSA’s
disposal in that launch, and the total number of devices in that launch.

prt_mapping_t vdp_mapping(
int *tuple,
void *global_store,
int total_threads,
int total_devices)

The function has to return the mapping information in an object of type
prt mapping t, with the �elds location and rank, where the location can be ei-
ther PRT LOCATION HOST or PRT LOCATION DEVICE, and the rank indicates the
global rank of the unit.

typedef struct prt_mapping_s {
prt_location_t location;
int rank;

} prt_mapping_t;

3.1.5 VSACon�guration

The user can set the VSA’s con�guration parameters by calling the
prt vsa config set() function. The function takes as parameters: the
pointer to the VSA, the name of the parameter, and the value to set. Currently,
two parameters can be set: PRT VDP SCHEDULING and PRT SVG TRACING.

void prt_vsa_config_set(
prt_vsa_t *vsa,
prt_config_param_t param,
prt_config_value_t value)

PRT VDP SCHEDULING can take two values: PRT VDP SCHEDULING AGGRESSIVE
and PRT VDP SCHEDULING LAZY. With aggressive scheduling, the VSA tries to �re

12

3.2. VDP OPERATION

each VDP as long as possible, i.e., as long as there are packets in all of the VDP’s
active channels. With lazy scheduling, the VSA �res each VDP once and looks for
another VDP to �re. By default, the VSA is set to aggressive scheduling.

PRT SVG TRACING can take two values: PRT SVG TRACING ON and
PRT SVG TRACING OFF. Turning on the SVG tracing activates PULSAR’s in-
ternal minimum overhead tracing mechanism, which traces CPU execution, GPU
execution, and the activity of the communication proxy, and produces the trace
in the form of a Scalable Vector Graphics (SVG) �le. By default, SVG tracing is o�.

PULSAR allows the user to set warmup functions for CPUs and GPUs. These func-
tions will be called by each thread and each device a�er calling prt vsa run()
and before the VSA starts timing its execution. The motivation is to allow the user
to accurately time the workload, while excluding the time of various initializations
performed by external so�ware components. The warmup function for CPUs can
be set byusing theprt vsa thread warmup func set() function. Thewarmup
function for GPUs can be set by using the prt vsa device warmup func set()
function. Both functions take as parameters: the pointer to the VSA, and the
pointer to the warmup function.

void prt_vsa_thread_warmup_func_set(
prt_vsa_t *vsa,
void(*)() func)

void prt_vsa_device_warmup_func_set(
prt_vsa_t *vsa,
void(*)() func)

3.2 VDPOperation

This section describes actions, which can take place inside the VDP’s function, i.e.,
the function passed to prt vdp new() (section 3.1.2). The user never calls that
function. It is called by the runtime, when packets are available in all active input
channels of the VDP.

3.2.1 Packet Creation and Deletion

Anew data packet can be created by calling the prt vdp packet new() function.
The function takes as parameters: the pointer to the VDP creating the packet, the
size of the data in bytes, and the pointer to the packet’s data payload. If a NULL
pointer is passed, the function allocates new memory for the data. The packet’s
data is accessible through the �eld data.

13

3.2. VDP OPERATION

prt_packet_t *prt_vdp_packet_new(
prt_vdp_t *vdp,
size_t size,
void *data)

An auxiliary function prt vdp packet new host to device() is provided to
simplify the common case in GPU programming, when GPU data needs to be ini-
tialized byaCPU.The function takes as parameters: the pointer to theVDPcreating
the packet, the size of the data in bytes, and the pointer to the data. The pointer
cannot be NULL and has to reside in the host memory. The function transfers the
packet to device memory. A�er this call, the data cannot be accessed anymore by
CPU code, and has to be accessed by GPU code.

prt_packet_t* prt_vdp_packet_new_host_to_device(
prt_vdp_t *vdp,
size_t size,
void *data)

A packet can be released by the VDP by calling the prt vdp packet release()
function. The function takes as parameters: the VDP releasing the packet and the
packet. The runtime will keep the packet and its data around, until it completes all
pending operations associated with the packet. However, the packet and its data
should not be accessed a�er the release operation.

void prt_vdp_packet_release(
prt_vdp_t *vdp,
prt_packet_t *packet)

3.2.2 Packet Reception and Ejection

A packets can be received by the VDP by calling the prt vdp channel pop()
function. The function takes as parameters: the VDP receiving the packet, and the
channel number, and returns a pointer to the packet received from that channel.
A�er receiving the packet, the packet’s data can be accessed through the data �eld.

prt_packet_t *prt_vdp_channel_pop(
prt_vdp_t *vdp,
int channel_num)

A packet can be sent by the VDP by calling the prt vdp channel push() func-
tion. The function takes as parameters: the VDP sending the packet, the channel
number, and the packet. The packet is still available to the VDP a�er calling that
function, and can be used, and repeatedly sent, until it is deleted (section 3.2.1).

14

3.3. HANDLING OF TUPLES

void prt_vdp_channel_push(
prt_vdp_t *vdp,
int channel_num,
prt_packet_t *packet)

3.2.3 Channel Deactivation and Reactivation

A channel can be deactivated by the VDP by calling the prt vdp channel off()
function. The function takes as parameters: the VDP deactivating the channel and
the channel number. This indicates to the runtime that it can schedule the VDP
(call the VDP function) without checking if there are packets in that channel. The
VDP should not attempt to read packets from an inactive channel.

void prt_vdp_channel_off(
prt_vdp_t *vdp,
int channel_num)

A channel can be reactivated by the VDP by calling the prt vdp channel on()
function. The function takes as parameters: the VDP reactivating the channel and
the channel number. This indicates to the runtime that it cannot schedule the VDP
(call the VDP function) without if there are no incoming packets in that channel.
By default, channels are active.

void prt_vdp_channel_on(
prt_vdp_t *vdp,
int channel_num)

3.3 Handling of Tuples

Anew tuple can be created bycalling the variadic functionprt tuple new(). The
function takes as parameters: the length of the tuple, followed by a variable-length
list of integer coe�cients. A tuple has to have at least one element. There is no
upper limit on the number of elements.

int* prt_tuple_new (
int len,
int a,
int b,
int c,
...)

In addition, tuples can be created using a set of macros, which contain the length
of the tuple in the name and take the elements as the parameters.

15

3.3. HANDLING OF TUPLES

prt_tuple_new1(a)
prt_tuple_new2(a,b)
prt_tuple_new3(a,b,c)
prt_tuple_new4(a,b,c,d)
prt_tuple_new5(a,b,c,d,e)
prt_tuple_new6(a,b,c,d,e,f)

Tuples are dynamically allocated strings or integers, with a the INT MAX constant
at the end, serving as the termination symbol. As such, tuples can be free by calling
the C standard library free() function. However, tuples should not be freed a�er
passing them to the PULSAR runtime. The runtime will free all such tuples during
its operation or at the time of calling prt vsa delete().

One possible error is passing of INT MAX to the tuple constructors. It will have
the silent consequence of indicating the end of the tuple where the used did not
intend it. Another possible error is the use of statically allocated tuples, i.e., tuples
created on the stack. The runtime will most likely crash when trying to deallocate
the memory occupied by such tuples.

16

Bibliography

[1] H. T. Kung and C. E. Leiserson. Systolic arrays (for VLSI). In Sparse Matrix
Proceedings, pages 256–282. Society for Industrial and Applied Mathematics,
1978. ISBN: 0898711606.

[2] H. T. Kung. Why systolic architectures? Computer, 15(1):37–46, 1982.
DOI: 10.1109/MC.1982.1653825.

[3] H. T. Kung. Systolic array. In Encyclopedia of Computer Science, pages 1741–1743.
John Wiley and Sons Ltd., Chichester, UK, 2003. ISBN: 0470864125.

17

http://books.google.com/books?id=lYRNdo2m7ssC&pg=PA256
http://dx.doi.org/10.1109/MC.1982.1653825
http://dl.acm.org/citation.cfm?id=1074100.1074851

	Essentials
	Problems for which PULSAR is Suitable
	Computers for which PULSAR is Suitable
	Software Components that PULSAR Requires
	Availability of PULSAR
	Documentation of PULSAR
	Commercial Use of PULSAR
	PULSAR Support
	PULSAR Funding
	Hardware Allocations for PULSAR

	Fundamentals
	Tuple
	Packet
	Channel
	Virtual Data Processor
	Virtual Systolic Array

	Further Details
	VSA Construction
	VSA Creation, Execution and Deletion
	VDP Creation and Insertion
	Channel Creation and Insertion
	Mapping of VDPs to Threads and Devices
	VSA Configuration

	VDP Operation
	Packet Creation and Deletion
	Packet Reception and Ejection
	Channel Deactivation and Reactivation

	Handling of Tuples

