Skip to content Skip to main navigation Report an accessibility issue

EECS Publication

Error Bounds from Extra Precise Iterative Refinement

James Demmel, Yozo Hida, W. Kahan, Xiaoye S. Li, Soni Mukherjee, and E. Jason Riedy

We present the design and testing of an algorithm for iterative refinement of the solution of linear equations, where the residual is computed with extra precision. This algorithm was originally proposed in the 1960s [6, 22] as a means to compute very accurate solutions to all but the most ill-conditioned linear systems of equations. However two obstacles have until now prevented its adoption in standard subroutine libraries like LAPACK: (1) There was no standard way to access the higher precision arithmetic needed to compute residuals, and (2) it was unclear how to compute a reliable error bound for the computed solution. The completion of the new BLAS Technical Forum Standard [5] has recently removed the first obstacle. To overcome the second obstacle, we show how a single application of iterative refinement can be used to compute an error bound in any norm at small cost, and use this to compute both an error bound in the usual infinity norm, and a componentwise relative error bound.

Published  2005-02-01 05:00:00  as  ut-cs-05-547 (ID:149)

ut-cs-05-547.pdf

« Back to Listing